Fr. 169.00

Combinatorics and Complexity of Partition Functions

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial  structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. 
The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. 

List of contents

Chapter I. Introduction.- Chapter II. Preliminaries.- Chapter III. Permanents.- Chapter IV. Hafnians and Multidimensional Permanents.- Chapter V. The Matching Polynomial.- Chapter VI. The Independence Polynomial.- Chapter VII. The Graph Homomorphism Partition Function.- Chapter VIII. Partition Functions of Integer Flows.- References.- Index.

About the author

Alexander Barvinok is a professor of mathematics at the University of Michigan in Ann Arbor, interested in computational complexity and algorithms in algebra, geometry and combinatorics. The reader might be familiar with his books “A Course in Convexity” (AMS, 2002) and “Integer Points in Polyhedra” (EMS, 2008)

Summary

Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial  structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. 
The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. 

Additional text

“The book is aimed at graduate students and researchers in theoretical computer science, combinatorics and statistical physics. … The author has the ability to make complicated proofs very accessible while not sacrificing any mathematical rigour, making it a pleasure to read. … The book also moves from the particular to the general … . An advantage of this is that it makes it easier to understand the key ideas.” (Guus Regts, Mathematical Reviews, August, 2018)

Report

"The book is aimed at graduate students and researchers in theoretical computer science, combinatorics and statistical physics. ... The author has the ability to make complicated proofs very accessible while not sacrificing any mathematical rigour, making it a pleasure to read. ... The book also moves from the particular to the general ... . An advantage of this is that it makes it easier to understand the key ideas." (Guus Regts, Mathematical Reviews, August, 2018)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.