Fr. 134.00

Ion-Irradiation-Induced Damage in Nuclear Materials - Case Study of a-SiO2 and MgO

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis investigates the behavior of two candidate materials (a-SiO2 and MgO) for applications in fusion (e.g., the International Thermonuclear Experimental Reactor  ITER) and Generation IV fission reactors. Both parts of the thesis - the development of the ionoluminescence technique and the study of the ion-irradiation effects on both materials - are highly relevant for the fields of the ion-beam analysis techniques and irradiation damage in materials. The research presented determines the microstructural changes at different length scales in these materials under ion irradiation. In particular, it studies the effect of the irradiation temperature using several advanced characterization techniques. It also provides much-needed insights into the use of these materials at elevated temperatures. Further, it discusses the development of the ion-beam-induced luminescence technique in different research facilities around the globe, a powerful in situ spectroscopic characterization method that until now was little known.

Thanks to its relevance, rigorosity and quality, this thesis has received twoprestigious awards in Spain and France.

List of contents

Introduction.- Part I Materials and Methods.- Studied Materials: a-SiO2 and MgO.- Ion-Solid Interactions and Ion Beam Modification of Materials.- Experimental Facilities.- Experimental Characterization Techniques.- Part II Ion Beam Induced Luminescence in Amorphous Silica.- General Features of the Ion Beam Induced Luminescence in Amorphous Silica.- Ionoluminescence in Silica: Role of the Silanol Group Content and the Ion Stopping Power.- Exciton Mechanisms and Modeling of the Ionoluminescence in Silica.- Part III Ion-Irradiation Damage in MgO.- MgO under Ion Irradiation at High Temperatures.- Ion Beam Induced Luminescence in MgO.- Conclusions and Prospects for the Future.

About the author

Diana Bachiller Perea studied Physics in the Universidad Complutense de Madrid (Spain) and obtained an Interuniversitary Master's Degree in Nuclear Physics in 2011. Her Thesis was carried out under joint supervision between the Center for Micro-Analysis of Materials (CMAM, Universidad Autónoma de Madrid, Spain) and the Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM, Université Paris-Sud, France). At present, she is working in the company Accelerators and Cryogenic Systems (ACS, Orsay, France) as a scientific expert in accelerators.

Summary

This thesis investigates the behavior of two candidate materials (a-SiO₂ and MgO) for applications in fusion (e.g., the International Thermonuclear Experimental Reactor  ITER) and Generation IV fission reactors. Both parts of the thesis – the development of the ionoluminescence technique and the study of the ion-irradiation effects on both materials – are highly relevant for the fields of the ion-beam analysis techniques and irradiation damage in materials. The research presented determines the microstructural changes at different length scales in these materials under ion irradiation. In particular, it studies the effect of the irradiation temperature using several advanced characterization techniques. It also provides much-needed insights into the use of these materials at elevated temperatures. Further, it discusses the development of the ion-beam-induced luminescence technique in different research facilities around the globe, a powerful in situ spectroscopic characterization method that until now was little known.

Thanks to its relevance, rigorosity and quality, this thesis has received twoprestigious awards in Spain and France.

Product details

Authors Diana Bachiller Perea
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2018
 
EAN 9783030004064
ISBN 978-3-0-3000406-4
No. of pages 182
Dimensions 157 mm x 243 mm x 17 mm
Weight 464 g
Illustrations XX, 182 p. 116 illus., 111 illus. in color.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.