Fr. 79.00

Real Analysis

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors.
The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach.
The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. 

List of contents

Preface.- Set Theory and Numbers.- Measure on the Real Line.- Measurable Functions.- Integration.- Differentiation and Integration.- General Measure Spaces.- Introduction to Metric and Normed Spaces.- Hilbert Spaces.- Topological Spaces.- Measure Construction.- Banach Spaces.- Appendices.- References. 

About the author

Peter Loeb is an emeritus Professor of Mathematics at the University of Illinois in Champaign-Urbana. His research is centered on problems of real analysis and applications of model theory to real analysis.

Summary

This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors.
The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach.
The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. 

Report

"This is a very well written book. Its chapters are no more than 20 pages each, which allows students to easily work through them. The proofs are sharp, lively and rigorously written. ... I recommend it, not only, to any student who wants to study or do research on measures and integration or who will use these notions in studying other subjects; but, also to every mathematics department's library." (Salim Salem, MAA Reviews, July, 2018)

Product details

Authors Peter A Loeb, Peter A. Loeb
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319808796
ISBN 978-3-31-980879-6
No. of pages 274
Dimensions 154 mm x 240 mm x 10 mm
Weight 493 g
Illustrations XII, 274 p.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

B, Funktionalanalysis und Abwandlungen, Integralrechnung und -gleichungen, measure theory, Mathematics and Statistics, Functional Analysis, Real Functions, Functions of real variables, Integral calculus & equations, Functional analysis & transforms, Measure and Integration

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.