Fr. 70.00

Reliability of Selective Laser Melted AlSi12 Alloy for Quasistatic and Fatigue Applications

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Selective laser melting (SLM) has established itself as the most prominent additive manufacturing (AM) process for metallic structures in aerospace, automotive and medical industries. For a reliable employment of this process, it has to conform to the demanding requirements of these industries in terms of quasistatic and, especially, fatigue performance. Shafaqat Siddique identifies the influence of SLM processing conditions on the microstructural features, and their corresponding influence on the mechanical behavior of the processed AlSi12 alloy structures. The author also gives insight into integrated manufacturing by combining conventional and SLM processes to get the synergic benefits. Requirements for fatigue-resistant designs in additive manufacturing are highlighted, and a novel method is developed for agile fatigue life prediction. About the Author
Shafaqat Siddique worked as Scientific Assistant at TU Dortmund University, Department of Materials Test Engineering (WPT), headed by Prof. Dr.-Ing. Frank Walther, and completed his Ph.D. research in cooperation with Laser Zentrum Nord (LZN) in Hamburg. He continues his post-doctoral research at TU Dortmund University, Germany.

List of contents

State of the art and investigation methodology.- Characterization, quasistatic and fatigue behavior of AlSi12 alloy.- Hybrid AlSi12 alloy structures.- Fatigue prediction methodology.

About the author

Shafaqat Siddique worked as Scientific Assistant at TU Dortmund University, Department of Materials Test Engineering (WPT), headed by Prof. Dr.-Ing. Frank Walther, and completed his Ph.D. research in cooperation with Laser Zentrum Nord (LZN) in Hamburg. He continues his post-doctoral research at TU Dortmund University, Germany.

Summary

Selective laser melting (SLM) has established itself as the most prominent additive manufacturing (AM) process for metallic structures in aerospace, automotive and medical industries. For a reliable employment of this process, it has to conform to the demanding requirements of these industries in terms of quasistatic and, especially, fatigue performance. Shafaqat Siddique identifies the influence of SLM processing conditions on the microstructural features, and their corresponding influence on the mechanical behavior of the processed AlSi12 alloy structures. The author also gives insight into integrated manufacturing by combining conventional and SLM processes to get the synergic benefits. Requirements for fatigue-resistant designs in additive manufacturing are highlighted, and a novel method is developed for agile fatigue life prediction. About the Author
Shafaqat Siddique worked as Scientific Assistant at TU Dortmund University, Department of Materials Test Engineering (WPT), headed by Prof. Dr.-Ing. Frank Walther, and completed his Ph.D. research in cooperation with Laser Zentrum Nord (LZN) in Hamburg. He continues his post-doctoral research at TU Dortmund University, Germany.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.