Fr. 135.00

Theory of One-Dimensional Vlasov-Maxwell Equilibria - With Applications to Collisionless Current Sheets and Flux Tubes

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This book describes and contextualises collisionless plasma theory, and in particular collisionless plasma equilibria. The Vlasov-Maxwell theory of collisionless plasmas is an increasingly important tool for modern plasma physics research: our ability to sustain plasma in a steady-state, and to mitigate instabilities, determines the success of thermonuclear fusion power plants on Earth; and our understanding of plasma aids in the prediction and mitigation of Space Weather effects on terrestrial environments and satellites. Further afield, magnetic reconnection is a ubiquitous energy release mechanism throughout the Universe, and modern satellites are now able to make in-situ measurements with kinetic scale resolution. To keep pace with these challenges and technological developments, a modern scientific discussion of plasma physics must enhance, and exploit, its 'literacy' in kinetic theory. For example, accurate analytical calculations and computer simulations of kinetic instabilities are predicated on a knowledge of Vlasov-Maxwell equilibria as an initial condition. This book highlights new fundamental work on Vlasov-Maxwell equilibria, of potential interest to mathematicians and physicists alike. Possible applications involve two of the most significant magnetic structures known to confine plasma and store energy: current sheets and flux tubes.   

List of contents

Introduction.- The Use of Hermite Polynomials for the Inverse Problem in One-Dimensional Vlasov-Maxwell Equilibria.- One-Dimensional Nonlinear Force-Free Current Sheets.- One-Dimensional Asymmetric Current Sheets.- Discussion.

About the author

Dr Oliver Allanson is a post-doctoral research associate working within the Department of Meteorology, University of Reading. Oliver is a space plasma physicist, and is a specialist in plasma kinetic theory. He graduated with a PhD in Applied Mathematics from the University of St Andrews in 2017; a MASt in Theoretical Physics from the Univeristy of Cambridge in 2013; and an MPhys in Theoretical Physics & Mathematics from the University of St Andrews in 2012.   

Summary

This book describes and contextualises collisionless plasma theory, and in particular collisionless plasma equilibria. The Vlasov–Maxwell theory of collisionless plasmas is an increasingly important tool for modern plasma physics research: our ability to sustain plasma in a steady-state, and to mitigate instabilities, determines the success of thermonuclear fusion power plants on Earth; and our understanding of plasma aids in the prediction and mitigation of Space Weather effects on terrestrial environments and satellites. Further afield, magnetic reconnection is a ubiquitous energy release mechanism throughout the Universe, and modern satellites are now able to make in-situ measurements with kinetic scale resolution. To keep pace with these challenges and technological developments, a modern scientific discussion of plasma physics must enhance, and exploit, its ‘literacy’ in kinetic theory. For example, accurate analytical calculations and computer simulations of kinetic instabilities are predicated on a knowledge of Vlasov–Maxwell equilibria as an initial condition. This book highlights new fundamental work on Vlasov–Maxwell equilibria, of potential interest to mathematicians and physicists alike. Possible applications involve two of the most significant magnetic structures known to confine plasma and store energy: current sheets and flux tubes.   

Product details

Authors Oliver Allanson
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2018
 
EAN 9783319975405
ISBN 978-3-31-997540-5
No. of pages 195
Dimensions 172 mm x 248 mm x 16 mm
Weight 438 g
Illustrations XX, 195 p. 39 illus., 22 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Miscellaneous

B, Sonnensystem: Sonne und Planeten, Elektrizität, Magnetismus und Elektromagnetismus, Angewandte Physik, astronautics, Physics and Astronomy, Electricity, electromagnetism & magnetism, Magnetism, Magnetic materials, Magnetism, Magnetic Materials, Space Physics, Space sciences, Plasma Physics, Plasma (Ionized gases)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.