Fr. 116.00

Selfsimilar Processes

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications.

After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications.

Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.

About the author










Paul Embrechts is Professor of Mathematics at the Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland. He is the author of numerous scientific papers on stochastic processes and their applications and the coauthor of the influential book on Modelling of Extremal Events for Insurance and Finance. Makoto Maejima is Professor of Mathematics at Keio University, Yokohama, Japan. He has published extensively on selfsimilarity and stable processes.

Summary

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications.

After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications.

Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.

Additional text

"This is a timely book. Everybody is talking about scaling, and selfsimilar stochastic processes are the basic and the clearest examples of models with scaling. In applications from finance to communication networks, selfsimilar processes are believed to be important. Yet much of what is known about them is folklore; this book fills the void and gives reader access to some hard facts. And because this book requires only modest mathematical sophistication, it is accessible to a wide audience."—Gennady Samorodnitsky, Cornell University

Product details

Authors P Embrechts, Paul Embrechts, Embrechts Paul, M Maejima
Assisted by Ingrid Daubechies (Editor), Jan Lenstra (Editor), Endre Suli (Editor)
Publisher Princeton University Press
 
Languages English
Product format Hardback
Released 15.08.2002
 
EAN 9780691096278
ISBN 978-0-691-09627-8
No. of pages 128
Dimensions 164 mm x 242 mm x 15 mm
Series Princeton Series in Applied Ma
Princeton Series in Applied Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Stochastics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.