Fr. 135.00

Hollow Core Optical Fibre Based Gas Discharge Laser Systems

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

The research in this book represents the culmination of a drive to build the first discharge gas laser unencumbered by the effects of diffraction. This breakthrough has been achieved through careful implementation of a discharge within a hollow-core optical fibre, and by developing measurement and analysis techniques to demonstrate laser action in an experimental optical cavity.
Gas lasers were amongst the earliest laser types to be demonstrated and commercialised, but it was recognised that noble gas lasers were limited by the minimum bore diameter of the laser tube, which is set by diffraction. The advent, in 2011, of hollow optical fibres with optical and physical properties suitable for gas discharge lasers opened up the opportunity to break this diffraction limit. Using a mixture of helium and xenon gas, lasing in the mid-infrared range was achieved using a 100µm core flexible hollow optical fibre which, at 1m long, is several hundred times the diffraction-limited Rayleigh length.

List of contents

Introduction to Laser Physics.- Introduction to Discharge Physics.- Electrically Pumped Noble Gas Lasers.- Introduction to Optical Fibres.- Experiment Assembly and CW Measurements of the He-Xe Laser.- Pulsed Measurements of the He-Xe Laser.- Experiments with New Gas Mixtures.- Conclusions and Future Prospects.

About the author

Adrian Love graduated from the University of Warwick in 2013 with a first class degree in Mathematics and Physics. He then joined the Centre for Photonics and Photonic Materials at the University of Bath to complete his PhD following a successful summer placement in 2012. His work on fibre based gas lasers under the supervision of William Wadsworth followed a short project on nonlinear optics. Having completed his PhD at the end of 2017, he left academia to pursue other career interests.

Summary

The research in this book represents the culmination of a drive to build the first discharge gas laser unencumbered by the effects of diffraction. This breakthrough has been achieved through careful implementation of a discharge within a hollow-core optical fibre, and by developing measurement and analysis techniques to demonstrate laser action in an experimental optical cavity.
Gas lasers were amongst the earliest laser types to be demonstrated and commercialised, but it was recognised that noble gas lasers were limited by the minimum bore diameter of the laser tube, which is set by diffraction. The advent, in 2011, of hollow optical fibres with optical and physical properties suitable for gas discharge lasers opened up the opportunity to break this diffraction limit. Using a mixture of helium and xenon gas, lasing in the mid-infrared range was achieved using a 100µm core flexible hollow optical fibre which, at 1m long, is several hundred times the diffraction-limited Rayleigh length.

Product details

Authors Adrian Love
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2018
 
EAN 9783319939698
ISBN 978-3-31-993969-8
No. of pages 107
Dimensions 161 mm x 242 mm x 13 mm
Weight 315 g
Illustrations XXI, 107 p. 78 illus., 19 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Electricity, magnetism, optics

Laser, B, Atoms, Physics, Lasers, Physics and Astronomy, Photonics, Applied optics, Optics, Lasers, Photonics, Optical Devices, Plasma Physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.