Fr. 49.50

Algebras and Representation Theory

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers.
The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams.

Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.

List of contents

1 Introduction.- 2 Algebras.- 3 Modules and Representations.- 4 Simple Modules in the Jordan-Hölder Theorem.- 5 Semisimple Modules and Semisimple Algebras.- 6 The Structure of Semisimple ALgebras - The Artin-Wedderburn Theorem.- 7 Semisimple Group Algebras and Maschke's Theorem.- 8 Indecomposable Modules.- 9 Representation Type.- 10 Representations of Quivers.- 11 Diagrams and Roots.- 12 Gabriel's Theorem.- 13 Proofs and Background.- 14 Appendix A: Induced Modules for Group Algebras.- 15 Appendix B: Solutions to Selected Exercises.- Index.

About the author

Karin Erdmann's research focus lies on representation theory of finite groups, and finite-dimensional algebras. She has written many research articles, and is the author of a research monograph and a textbook.
Thorsten Holm is Professor of Mathematics at Leibniz Universität Hannover. His research interests include representation theory of finite groups and finite-dimensional algebras, and algebraic combinatorics.

Summary

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers.
The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams.

Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.

Additional text

“The book under review is a text-book for higher undergraduate mathematics students or graduate students who have previous knowledge of results from linear algebra, and basic properties of rings and groups. … It is also useful for non-experts (in representation theory of quivers), they may benefit from this book in several ways: by examining the numerous worked examples, or by working out the many exercises.” (Bin Zhu, zbMATH 1429.16001, 2020)

Report

"The book under review is a text-book for higher undergraduate mathematics students or graduate students who have previous knowledge of results from linear algebra, and basic properties of rings and groups. ... It is also useful for non-experts (in representation theory of quivers), they may benefit from this book in several ways: by examining the numerous worked examples, or by working out the many exercises." (Bin Zhu, zbMATH 1429.16001, 2020)

Product details

Authors Kari Erdmann, Karin Erdmann, Thorsten Holm
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319919973
ISBN 978-3-31-991997-3
No. of pages 298
Dimensions 155 mm x 235 mm x 17 mm
Weight 470 g
Illustrations IX, 298 p. 59 illus.
Series Springer Undergraduate Mathematics Series
Springer Undergraduate Mathematics Series
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.