Fr. 158.00

Measuring Uncertainty within the Theory of Evidence - Advances within the Theory of Evidence

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone's Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method.
While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers tointeract with the proposed approach by generating and combining RFVs through custom measurement functions. With numerous examples of applications, this book provides a comprehensive treatment of the RFV approach to uncertainty that is suitable for any graduate student or researcher with interests in the measurement field. 

List of contents

1. Introduction.- Part I: The background of the Measurement Uncertainty.- 2. Measurements.- 3. Mathematical Methods to handle Measurement Uncertainty.- 4. A first, preliminary example.- Part II: The mathematical Theory of the Evidence.- 5. Introduction: probability and belief functions.- 6. Basic definitions of the Theory of Evidence.- 7. Particular cases of the Theory of Evidence.- 8. Operators between possibility distributions.- 9. The joint possibility distributions.- 10. The combination of the possibility distributions.- 11. The comparison of the possibility distributions.- 12. The Probability-Possibility Transformations.- Part III: The Fuzzy Set Theory and the Theory of the Evidence.- 13. A short review of the Fuzzy Set Theory.- 14. The relationship between the Fuzzy Set Theory and the Theory of Evidence.- Part IV: Measurement Uncertainty within the mathematical framework of the Theory of the Evidence.- 15. Introduction: towards an alternative representation of the Measurement Results.- 16. Random-Fuzzy Variables and Measurement Results.- 17. The Joint Random-Fuzzy variables.- 18. The Combination of the Random-Fuzzy Variables.- 19. The Comparison of the Random-Fuzzy Variables.- 20. Measurement Uncertainty within Fuzzy Inference Systems.- Part V: Application examples.- 21. Phantom Power measurement.- 22. Characterization of a resistive voltage divider.- 23. Temperature measurement update.- 24. The Inverted Pendulum.- 25. Conclusion.- References.- Index.

About the author

Simona Salicone is Associate Professor of electrical and electronic measurements in the Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano. Her principal research interests are the analysis of advanced mathematical methods for uncertainty representation and estimation, and she has contributed to the development and application of the mathematical Theory of Evidence to the expression and evaluation of uncertainty in measurement. 
Marco Prioli is an IEEE Instrumentation and Measurement Society member. He is also a memeber of the Italian Association for Electrical and Electronic Measurements (GMEE). 

Summary

This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone’s Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method.
While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers tointeract with the proposed approach by generating and combining RFVs through custom measurement functions. With numerous examples of applications, this book provides a comprehensive treatment of the RFV approach to uncertainty that is suitable for any graduate student or researcher with interests in the measurement field. 

Product details

Authors Marco Prioli, Simon Salicone, Simona Salicone
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2018
 
EAN 9783319741376
ISBN 978-3-31-974137-6
No. of pages 330
Dimensions 159 mm x 279 mm x 25 mm
Weight 680 g
Illustrations XV, 330 p. 154 illus., 141 illus. in color. With online files/update.
Series Springer Series in Measurement Science and Technology
Springer Series in Measurement Science and Technology
Subjects Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Stochastik, B, Mathematics and Statistics, Probability Theory and Stochastic Processes, Probabilities, Stochastics, Probability Theory, random fuzzy variables, theory of evidence, phantom power measurement, inverted pendulum

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.