Fr. 70.00

Redescription Mining

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book provides a gentle introduction to redescription mining, a versatile data mining tool that is useful to find distinct common characterizations of the same objects and, vice versa, to identify sets of objects that admit multiple shared descriptions. It is intended for readers who are familiar with basic data analysis techniques such as clustering, frequent itemset mining, and classification. Redescription mining is defined in a general way, making it applicable to different types of data. The general framework is made more concrete through many practical examples that show the versatility of redescription mining. The book also introduces the main algorithmic ideas for mining redescriptions, together with applications from various domains. The final part of the book contains variations and extensions of the basic redescription mining problem, and discusses some future directions and open questions.

About the author

Esther Galbrun is a junior research scientist at Inria Nancy--Grand Est, France. She was previously a postdoctoral researcher at the CS department of Boston University, USA, after having obtained her PhD in 2014 from the CS department at the University of Helsinki, Finland, on the topic of redescription mining.
Pauli Miettinen is a senior researcher and head of the area Data Mining at the Max Planck Institute for Informatics, Germany. He is also an Adjunct Professor of computer science at the University of Helsinki, Finland, where he previously worked in Prof. Heikki Mannila’s group, and received his PhD in 2009. His main research interest is in Algorithmic Data Analysis. In particular, he has been working on matrix decompositions over non-standard algebras and their applications to data mining and on redescription mining.

Summary

This book provides a gentle introduction to redescription mining, a versatile data mining tool that is useful to find distinct common characterizations of the same objects and, vice versa, to identify sets of objects that admit multiple shared descriptions. It is intended for readers who are familiar with basic data analysis techniques such as clustering, frequent itemset mining, and classification. Redescription mining is defined in a general way, making it applicable to different types of data. The general framework is made more concrete through many practical examples that show the versatility of redescription mining. The book also introduces the main algorithmic ideas for mining redescriptions, together with applications from various domains. The final part of the book contains variations and extensions of the basic redescription mining problem, and discusses some future directions and open questions. 

Product details

Authors Esthe Galbrun, Esther Galbrun, Pauli Miettinen
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319728889
ISBN 978-3-31-972888-9
No. of pages 80
Dimensions 156 mm x 239 mm x 5 mm
Weight 182 g
Illustrations XI, 80 p. 18 illus., 14 illus. in color.
Series SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

C, Data Mining, Wissensbasierte Systeme, Expertensysteme, computer science, Data Mining and Knowledge Discovery, Expert systems / knowledge-based systems, visualizations

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.