Read more
Informationen zum Autor Richard Soare is a physical geographer (MSc, Geography; BSc/BArts, Biology-Geography (McGill University); D.Phil., Political Philosophy (Oxford University); MA, Political Science, BA, Honors Philosophy (McGill University). He specializes in the study of periglacial (cold-climate and non-glacial) landscapes and has spent numerous field seasons in the low, medium and high Canadian arctic pursuing this interest. Through the last twenty years his focus has been off-planet, i.e. identifying possible periglacial-environments on Mars and evaluating the extent to which these environments may have been shaped by freeze-thaw cycling in the relatively recent past. His work spans Mars geographically, ranging from Utopia Planitia in the northern hemisphere to the Argyre impact-crater in the southern hemisphere, and has been published widely in high-impact journals such as Icarus and Earth & Planetary Science Letters. He is the principal convenor of the 1st Late Mars Workshop (October 2018), to be held in Houston, Texas and was recently a participating scientist on a Synthetic Aperture Radar instrument concept-study funded by the Canadian Space Agency. Klappentext Dynamic Mars: Recent and Current Landscape Evolution of the Red Planet presents the latest observations, interpretations, and explanations of geological change at the surface or near-surface of this terrestrial body. These changes raise questions about a decades-old paradigm, formed largely in the aftermath of very coarse Mariner-mission imagery in the 1960s, suggesting that much of the interesting geological activity on Mars occurred deep in its past, eons ago. The book includes discussions of (1) Mars' ever-changing atmosphere and the impact of this on the planet's surface and near-surface; (2) the possible involvement of water in relatively new, if not contemporary, gully-like flows and slope streaks (i.e. recurring slope lineae); and (3) the identification of a broad suite of agents and processes (i.e. glacial, periglacial, aeolian, meteorological, volcanic, and meteoric) that are actively revising surface and near-surface landscapes, landforms, and features on a local, regional, and hemispheric scale. Highly illustrated and punctuated by data from the most recent Mars missions, Dynamic Mars is a valuable resource for all levels of research in the geological history of Mars, as well as of the three other terrestrial planets. Inhaltsverzeichnis Late Amazonian Epoch climate 1. Orbital (climatic) forcing and its imprint on the global landscape Recent surface water at/near the mid-latitudes? 2. Unraveling the mysteries of recurring slope lineae (RSL) 3. Gullies and their connection with the climate 4. Recent fluvial-channels, -landforms and fresh shallow-valleys in the Olympus Mons lava plains The Polar Regions 5. Active geomorphological processes involving exotic agents 6. CO2-driven geomorphological processes Glacial and periglacial landscapes 7. Paleo-periglacial and "ice-rich? complexes in Utopia Planitia 8. Bi-hemispheric (periglacial) mass wasting Volcanism 9. Volcanic disruption of recent ice-deposits in the Argyre Basin Aeolian processes 10. Dust devils: stirring up the surface 11. Dark Dunes of Mars: An orbit-to-ground multidisciplinary perspective of aeolian science Other surface-modification processes 12. Modification of the surface by impact cratering 13. Stone pavements, lag deposits, and contemporary landscape-evolution 14. Karst landforms as markers of recent climate change: en example from the late Amazonian Epoch evaporite karst within a trough in western Noctis Labyrinthus ...
List of contents
Late Amazonian Epoch climate
1. Orbital (climatic) forcing and its imprint on the global landscape
Recent surface water at/near the mid-latitudes?
2. Unraveling the mysteries of recurring slope lineae (RSL)
3. Gullies and their connection with the climate
4. Recent fluvial-channels, -landforms and fresh shallow-valleys in the Olympus Mons lava plains
The Polar Regions
5. Active geomorphological processes involving exotic agents
6. CO2-driven geomorphological processes
Glacial and periglacial landscapes
7. Paleo-periglacial and "ice-rich? complexes in Utopia Planitia
8. Bi-hemispheric (periglacial) mass wasting
Volcanism
9. Volcanic disruption of recent ice-deposits in the Argyre Basin
Aeolian processes
10. Dust devils: stirring up the surface
11. Dark Dunes of Mars: An orbit-to-ground multidisciplinary perspective of aeolian science
Other surface-modification processes
12. Modification of the surface by impact cratering
13. Stone pavements, lag deposits, and contemporary landscape-evolution
14. Karst landforms as markers of recent climate change: en example from the late Amazonian Epoch evaporite karst within a trough in western Noctis Labyrinthus
About the author
Richard Soare is a physical geographer (MSc, Geography; BSc/BArts, Biology-Geography (McGill University); D.Phil., Political Philosophy (Oxford University); MA, Political Science, BA, Honors Philosophy (McGill University). He specializes in the study of periglacial (cold-climate and non-glacial) landscapes and has spent numerous field seasons in the low, medium and high Canadian arctic pursuing this interest. Through the last twenty years his focus has been off-planet, i.e. identifying possible periglacial-environments on Mars and evaluating the extent to which these environments may have been shaped by freeze-thaw cycling in the relatively recent past. His work spans Mars geographically, ranging from Utopia Planitia in the northern hemisphere to the Argyre impact-crater in the southern hemisphere, and has been published widely in high-impact journals such as Icarus and Earth & Planetary Science Letters. He is the principal convenor of the 1st Late Mars Workshop (October 2018), to be held in Houston, Texas and was recently a participating scientist on a Synthetic Aperture Radar instrument concept-study funded by the Canadian Space Agency.