Fr. 158.40

Predictive Statistics - Analysis and Inference Beyond Models

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies.

List of contents










Part I. The Predictive View: 1. Why prediction?; 2. Defining a predictive paradigm; 3. What about modeling?; 4. Models and predictors: a bickering couple; Part II. Established Settings for Prediction: 5. Time series; 6. Longitudinal data; 7. Survival analysis; 8. Nonparametric methods; 9. Model selection; Part III. Contemporary Prediction: 10. Blackbox techniques; 11. Ensemble methods; 12. The future of prediction; References; Index.

About the author










Bertrand S. Clarke is Chair of the Department of Statistics at the University of Nebraska, Lincoln. His research focuses on predictive statistics and statistical methodology in genomic data. He is a fellow of the American Statistical Association, serves as editor or associate editor for three journals, and has published numerous papers in several statistical fields as well as a book on data mining and machine learning.

Summary

Aimed at statisticians and machine learners, this retooling of statistical theory asserts that high-quality prediction should be the guiding principle of modeling and learning from data, then shows how. The fully predictive approach to statistical problems outlined embraces traditional subfields and 'black box' settings, with computed examples.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.