Read more
Informationen zum Autor William Hoiles is a Research Fellow in the Department of Electrical and Computer Engineering at the University of British Columbia, Vancouver. Vikram Krishnamurthy is a Professor in the School of Electrical and Computer Engineering and Cornell Tech at Cornell University, New York. He is a Fellow of the IEEE and the author of Partially Observed Markov Decision Processes (Cambridge, 2016). Bruce Cornell is an Adjunct Professor in the School of Life Sciences at the University of Technology Sydney, and at Western Sydney University. He is also the Principal Scientist at Surgical Diagnostics Pty Ltd and SDx Tethered Membranes Pty Ltd. Klappentext A state-of-the-art guide to building synthetic membranes for biological devices, covering their construction, measurement, and modelling. Zusammenfassung Combining synthesis with mathematical modelling! this is a state-of-the-art guide to building artificial membranes for biological devices. Supported by numerous case studies and molecular dynamics simulation code! it provides a powerful toolkit for researchers! students and professionals in bioengineering! biophysics and electrical engineering. Inhaltsverzeichnis Part I. Background: 1. Motivation and outline; 2. Biochemistry for engineers: a short primer; 3. Engineered artificial membranes; Part II. Building Engineered Membranes, Devices and Experimental Results: 4. Formation of engineered tethered membranes; 5. Ion-channel switch biosensor; 6. Physiochemical membrane platforms; 7. Experimental measurement methods for engineered membranes; Part III. Dynamic Models for Artificial Membranes: Atoms-to-Device: 8. Reaction-rate constrained models for engineered membranes; 9. Reaction-rate constrained models for the ICS biosensor; 10. Diffusion constrained continuum models of engineered membranes; 11. Electroporation models in engineered artificial membranes; 12. Electroporation measurements in engineered membranes; 13. Electrophysiological response of ion channels and cells; 14. Coarse-grained molecular dynamics; 15. All-atom molecular dynamics simulation models; 16. Closing summary for part III: from atoms to device; Appendices: Appendix A. Elementary primer on partial differential equations (PDE); Appendix B. Tutorial on coarse-grained molecular dynamics with peptides....