Fr. 147.00

Lectures on Nonlinear Evolution Equations - Initial Value Problems

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided.
In this second edition, initial-boundary value problems in waveguides are additionally considered.

List of contents

Introduction.- 1. Global solutions to wave equations - existence theorems.- 2. L^p - L^q-decay estimates for the linear we equation.- 3. Linear symmetric hyperbolic systems.- 3.1 Energy estimates.- 3.2 A global existence theorem.- 3.3 Remarks on other methods.- 4. Some inequalities.- 5. Local existence for quasilinear symmetric hyperbolic.- 6. High energy estimates.- 7. Weighted a priori estimates.- 8. Global solutions to wave equations - proofs.- 8.1 Proof of Theorem 1.1.- 8.2 Proof ot Theorem 1.2.- 9. Other methods.- 10. Development of singularities.- 11. More evolutions equations.- 11.1 Equations of elasiticity.- 11.1.1 Initially isotropic media in R^3.- 11.1.2 Initially cubic media in R^3.- 11.2 Heat equations.- 11.3 Equations of thermoelasticity.- 11.4 Schrödinger equations.- 11.5 Klein-Gordon equations.- 11.6 Maxwell equations.- 11.7 Plate equations.- 12. Further aspects and questions.- 13. Evolution equations in waveguides.- 13.1 Nonlinear wave equations.- 13.1.1 Linear part.- 13.1.2 Nonlinear part.- 13.2. Schrödinger equations.- 13.3. Equations of elasticity and Maxwell equations.- 13.4 General waveguides.- Appendix.- A. Interpolation.- B. The Theorem of Cauchy-Kowalevsky.- C. A local existence theorem for hyperbolic-parabolic systems References Notation Index.

Summary

This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided.
In this second edition, initial-boundary value problems in waveguides are additionally considered.

Product details

Authors Reinhard Racke
Publisher Springer, Berlin
 
Original title Lectures on Nonlinear Evolution Equations. Initial Value Problem
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783319342597
ISBN 978-3-31-934259-7
No. of pages 306
Dimensions 155 mm x 236 mm x 19 mm
Weight 486 g
Illustrations VIII, 306 p. 13 illus.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, B, Mathematics and Statistics, Partial Differential Equations, Differential equations, wave equation, Thermoelasticity, waveguide

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.