Fr. 135.00

The Nature of Dusty Star-Forming Galaxies

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This thesis combines a theoretical model of galaxy formation with a treatment of the radiative transfer in the titular dusty star-forming galaxies. Embedding this within the well-established CDM (Lambda cold dark matter) cosmology, the author was able to simulate galaxy populations from which realistic observational images were synthesised. Based on further analysis, he shows that there is a good correspondence with observations from new instruments such as the SCUBA2 bolometric camera and the Atacama Large Millimeter Array (ALMA) interferometer, and reveals some novel aspects of this exciting galaxy population. In particular, he shows that blending of these galaxies in the imaging produces an artificial enhancement in their clustering, which he dubs "blending bias". This implies that the host dark matter halo masses for these galaxies have previously been significantly overestimated. He also presents amongst the first predictions from a galaxy formation model for observations of these galaxies that will be made by the James Webb Space Telescope (the successor to the Hubble Space Telescope).

List of contents

Introduction.- The Galaxy Formation Model.- Simulated Observations of Sub-millimetre Galaxies: The Impact of Single-dish Resolution and Field Variance.- The Clustering Evolution of Dusty Star-Forming Galaxies.- The Far Infra-red Seds of Main-sequence and Starburst Galaxies.- Predictions for Deep Galaxy Surveys with JWST.- Overall Conclusions and Future Work.

About the author

Dr. William Cowley is a British scientist originally from Middlesbrough. He completed his Masters degree in theoretical physics in 2010 at Imperial College London, before spending two years as a consultant for Ernst & Young, working mainly in financial risk. He returned to academia in 2012 to begin his PhD at the Institute for Computational Cosmology, Durham University, where he was supervised by Profs. Cedric Lacey, Carlton Baugh and Shaun Cole. He successfully defended his thesis in November 2016 and is now a post-doctoral researcher at the Kapteyn Astronomical Institute, University of Groningen, working with Prof. Dr. Karina Caputi.

Summary

This thesis combines a theoretical model of galaxy formation with a treatment of the radiative transfer in the titular dusty star-forming galaxies. Embedding this within the well-established ΛCDM (Lambda cold dark matter) cosmology, the author was able to simulate galaxy populations from which realistic observational images were synthesised. Based on further analysis, he shows that there is a good correspondence with observations from new instruments such as the SCUBA2 bolometric camera and the Atacama Large Millimeter Array (ALMA) interferometer, and reveals some novel aspects of this exciting galaxy population. In particular, he shows that blending of these galaxies in the imaging produces an artificial enhancement in their clustering, which he dubs “blending bias”. This implies that the host dark matter halo masses for these galaxies have previously been significantly overestimated. He also presents amongst the first predictions from a galaxy formation model for observations of these galaxies that will be made by the James Webb Space Telescope (the successor to the Hubble Space Telescope).

Product details

Authors William Cowley
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2017
 
EAN 9783319667478
ISBN 978-3-31-966747-8
No. of pages 196
Dimensions 165 mm x 242 mm x 18 mm
Weight 461 g
Illustrations XXXV, 196 p. 74 illus., 57 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Astronomy

B, Kosmologie und das Universum, Astrophysics, Astronomy, space & time, Cosmology, Physics and Astronomy, Astronomy, Observations and Techniques, Astronomy—Observations, Observations, Astronomical, Astrophysics and Astroparticles, Relativity physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.