Fr. 93.00

Representing Scientific Knowledge - The Role of Uncertainty

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This book is written for anyone who is interested in how a field of research evolves and the fundamental role of understanding uncertainties involved in different levels of analysis, ranging from macroscopic views to meso- and microscopic ones. We introduce a series of computational and visual analytic techniques, from research areas such as text mining, deep learning, information visualization and science mapping, such that readers can apply these tools to the study of a subject matter of their choice. In addition, we set the diverse set of methods in an integrative context, that draws upon insights from philosophical, sociological, and evolutionary theories of what drives the advances of science, such that the readers of the book can guide their own research with their enriched theoretical foundations.
Scientific knowledge is complex. A subject matter is typically built on its own set of concepts, theories, methodologies and findings, discovered by generations of researchersand practitioners. Scientific knowledge, as known to the scientific community as a whole, experiences constant changes. Some changes are long-lasting, whereas others may be short lived. How can we keep abreast of the state of the art as science advances? How can we effectively and precisely convey the status of the current science to the general public as well as scientists across different disciplines?


The study of scientific knowledge in general has been overwhelmingly focused on scientific knowledge per se. In contrast, the status of scientific knowledge at various levels of granularity has been largely overlooked. This book aims to highlight the role of uncertainties, in developing a better understanding of the status of scientific knowledge at a particular time, and how its status evolves over the course of the development of research. Furthermore, we demonstrate how the knowledge of the types of uncertainties associated with scientific claims serves as an integral and critical part of our domain expertise.

List of contents

Beyond the State of the Art.- Macroscopic Views of Science.- Mesoscopic and Microscopic Views of Science.- Text Mining.- Literature-Based Discovery.- Measuring Scholarly Impact.- Representing Scientific Knowledge.- Visual Exploration of Scientific Literature.- Visual Observatory of Scientific Knowledge.

About the author

Chaomei Chen is a Professor in the College of Computing and Informatics at Drexel University and a Professor in the Department of Library and Information Science at Yonsei University. He is the Editor in Chief of Information Visualization and Chief Specialty Editor of Frontiers in Research Metrics and Analytics. His research interests include mapping scientific frontiers, information visualization, visual analytics, and scientometrics. He has designed and developed the widely used CiteSpace visual analytic tool for analyzing patterns and trends in scientific literature. He is the author of several books such as Mapping Scientific Frontiers (Springer), Turning Points (Springer), and The Fitness of Information (Wiley).

Min Song is an Underwood Distinguished Professor at Yonsei University. He has extensive experience in research and teaching in text mining and big data analytics at both undergraduate and graduate levels. Min has a particular interest in literature-based knowledge discovery in biomedical domains and its extensions to a broader context such as the social media. He is also interested in developing open source text mining software in Java, notably creating the PKDE4J system to support entity and relation extraction for public knowledge discovery.

Summary

This book is written for anyone who is interested in how a field of research evolves and the fundamental role of understanding uncertainties involved in different levels of analysis, ranging from macroscopic views to meso- and microscopic ones. We introduce a series of computational and visual analytic techniques, from research areas such as text mining, deep learning, information visualization and science mapping, such that readers can apply these tools to the study of a subject matter of their choice. In addition, we set the diverse set of methods in an integrative context, that draws upon insights from philosophical, sociological, and evolutionary theories of what drives the advances of science, such that the readers of the book can guide their own research with their enriched theoretical foundations.
Scientific knowledge is complex. A subject matter is typically built on its own set of concepts, theories, methodologies and findings, discovered by generations of researchersand practitioners.  Scientific knowledge, as known to the scientific community as a whole, experiences constant changes. Some changes are long-lasting, whereas others may be short lived. How can we keep abreast of the state of the art as science advances? How can we effectively and precisely convey the status of the current science to the general public as well as scientists across different disciplines?


The study of scientific knowledge in general has been overwhelmingly focused on scientific knowledge per se. In contrast, the status of scientific knowledge at various levels of granularity has been largely overlooked. This book aims to highlight the role of uncertainties, in developing a better understanding of the status of scientific knowledge at a particular time, and how its status evolves over the course of the development of research. Furthermore, we demonstrate how the knowledge of the types of uncertainties associated with scientific claims serves as an integral and critical part of our domain expertise.

Product details

Authors Chaome Chen, Chaomei Chen, Min Song
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 30.11.2017
 
EAN 9783319625416
ISBN 978-3-31-962541-6
No. of pages 375
Dimensions 156 mm x 242 mm x 29 mm
Weight 730 g
Illustrations XXXII, 375 p. 200 illus., 165 illus. in color.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

B, Software Engineering, Data Mining, Bildverarbeitung, computer science, Computer Vision, Computer Imaging, Vision, Pattern Recognition and Graphics, Data Mining and Knowledge Discovery, Optical data processing, Expert systems / knowledge-based systems

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.