Fr. 172.00

Plasma Processing of Nanomaterials

English · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more










New challenges are emerging for plasma-based processes as we shift from thin film technology to nanotechnology. Offering numerous examples of plasma processing of nanomaterials, this book provides an in-depth overview of recent advances in this crucial area, as well as threats to its development. Addressing both experimental and theoretical aspects of plasma processing technology, the author illustrates examples of its successful application in nanoelectronics, catalysis, energy sensors, nanomedicine, and several other fields.


List of contents

Nanoscale Etching and Deposition. Extreme Ultraviolet Light Lithography for Producing Nanofeatures in Next-Generation Semiconductor Processing. Nonthermal Plasma Synthesis of Semiconductor Nanocrystals. Microscale Plasmas for Metal and Metal Oxide Nanoparticle Synthesis. Large-Scale, Plasma-Assisted Growth of Nanowires. Cathodic Arc Discharge for Synthesis of Carbon Nanoparticles. Atmospheric Plasmas for Carbon Nanotubes (CNTs). Structural Control of Single-Walled Carbon Nanotubes by Plasma Chemical Vapor Deposition. Graphene Growth by Plasma-Enhanced Chemical Vapor Deposition (PECVD). Modeling Aspects of Plasma-Enhanced Chemical Vapor Deposition of Carbon-Based Materials. Modeling Catalytic Growth of One-Dimensional Nanostructures. Diagnostics of Energy Fluxes in Dusty Plasmas. Selective Functionalization and Modification of Carbon Nanomaterials by Plasma Techniques. Plasma–Liquid Interactions for Fabrication of Nanobiomaterials. Assembly and Self-Organization of Nanomaterials.

About the author

R. Mohan Sankaran is an Associate Professor of Chemical Engineering at Case Western Reserve University (CWRU) in Cleveland, Ohio. He received his Bachelor’s degree in Chemical Engineering from the University of California at Los Angeles in 1998 and his Ph.D. in Chemical Engineering from the California Institute of Technology in 2004. He joined the Department of Chemical Engineering at CWRU in 2005 as the John C. Angus Legacy Assistant Professor. As a faculty member, he has received several awards, including the CAREER Award from the National Science Foundation, the Young Investigator Program Award from the Air Force Office of Scientific Research, the Camille Dreyfus Teacher-Scholar Award, the Case School of Engineering Research Award, and the Peter Mark Memorial Award from the American Vacuum Society. He is recognized worldwide for his work on atmospheric-pressure microplasmas and their application in nanomaterials synthesis.
Dr. Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Summary

We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress.
Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits.
An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of:


  • Nanoscale etching/deposition of thin films

  • Catalytic growth of carbon nanotubes and semiconductor nanowires

  • Silicon nanoparticle synthesis

  • Functionalization of carbon nanotubes

  • Self-organized nanostructures
Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work.
About the Author:
R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Product details

Authors R. Mohan Sankaran, R. Mohan (Case Western Reserve Universit Sankaran
Assisted by R Mohan Sankaran (Editor), R. Mohan Sankaran (Editor), R. Mohan (Case Western Reserve University Sankaran (Editor)
Publisher Taylor & Francis Ltd.
 
Languages English
Product format Paperback / Softback
Released 31.12.2018
 
EAN 9781138077430
ISBN 978-1-138-07743-0
No. of pages 430
Series Nanomaterials and their Applications
Nanomaterials and their Applications
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.