Fr. 14.50

Data Science für Unternehmen - Data Mining und datenanalytisches Denken praktisch anwenden

German · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

  • Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
  • Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
  • Zahlreiche Praxisbeispiele zur Veranschaulichung

Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
  • Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
  • Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
  • Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
  • Datenanalytisches Denken lernen
  • Der Data-Mining-Prozess
  • Überwachtes und unüberwachtes Data Mining
  • Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
  • Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
  • Prinzip und Berechnung der Ähnlichkeit
  • Nächste-Nachbarn-Methoden und Clustering
  • Entscheidungsanalyse I: Was ist ein gutes Modell
  • Visualisierung der Leistung von Modellen
  • Evidenz und Wahrscheinlichkeiten
  • Texte repräsentieren und auswerten
  • Entscheidungsanalyse II: Analytisches Engineering
  • Data Science und Geschäftsstrategie

About the author

Foster Provost is Professor and NEC Faculty Fellow at the NYU Stern School of Business where he teaches in the MBA, Business Analytics, and Data Science programs. His award-winning research is read and cited broadly. Prof. Provost has co-founded several successful companies focusing on data science for marketing.

Tom Fawcett holds a Ph.D. in machine learning and has worked in industry R&D for more than two decades for companies such as GTE Laboratories, NYNEX/Verizon Labs, and HP Labs. His published work has become standard reading in data science both on methodology (evaluating data mining results) and on applications (fraud detection and spam filtering).

Summary

Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung

Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:

Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln

Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.

Aus dem Inhalt:

Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie

Additional text

»Das Buch steigt tief in die Kunst der Data Science ein und versucht gleichzeitig, die wesentlichen Grundzüge dieser vergleichsweise jungen Wissenschaft herauszuarbeiten. Wer den akademischen Zugang nicht scheut, erhält auf hohem konzeptionellem und analytischem Niveau einen sehr umfassenden Einblick in das Thema.« (getAbstract, 10/2018)

Report

»Das Buch steigt tief in die Kunst der Data Science ein und versucht gleichzeitig, die wesentlichen Grundzüge dieser vergleichsweise jungen Wissenschaft herauszuarbeiten. Wer den akademischen Zugang nicht scheut, erhält auf hohem konzeptionellem und analytischem Niveau einen sehr umfassenden Einblick in das Thema.« (getAbstract, 10/2018)

Product details

Authors Tom Fawcett, Foste Provost, Foster Provost
Publisher mitp-Verlag
 
Languages German
Product format Paperback / Softback
Released 03.11.2017
 
EAN 9783958455467
ISBN 978-3-95845-546-7
No. of pages 432
Dimensions 170 mm x 239 mm x 22 mm
Weight 751 g
Series mitp Business
mitp Business
Subjects Natural sciences, medicine, IT, technology > IT, data processing > Data communication, networks

Daten, Big Data, Datenerfassung und -analyse, Data Mining, Maschinelles Lernen, Projektmanager

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.