Fr. 90.00

Text Mining in Practice With R

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor TED KWARTLER is a data science instructor at DataCamp.com. He has worked in analytical and executive roles at DataRobot, Liberty Mutual Insurance and Amazon.com. Klappentext A reliable, cost-effective approach to extracting priceless business information from all sources of textExcavating actionable business insights from data is a complex undertaking, and that complexity is magnified by an order of magnitude when the focus is on documents and other text information. This book takes a practical, hands-on approach to teaching you a reliable, cost-effective approach to mining the vast, untold riches buried within all forms of text using R.Author Ted Kwartler clearly describes all of the tools needed to perform text mining and shows you how to use them to identify practical business applications to get your creative text mining efforts started right away. With the help of numerous real-world examples and case studies from industries ranging from healthcare to entertainment to telecommunications, he demonstrates how to execute an array of text mining processes and functions, including sentiment scoring, topic modelling, predictive modelling, extracting clickbait from headlines, and more. You'll learn how to:* Identify actionable social media posts to improve customer service* Use text mining in HR to identify candidate perceptions of an organisation, match job descriptions with resumes, and more* Extract priceless information from virtually all digital and print sources, including the news media, social media sites, PDFs, and even JPEG and GIF image files* Make text mining an integral component of marketing in order to identify brand evangelists, impact customer propensity modelling, and much moreMost companies' data mining efforts focus almost exclusively on numerical and categorical data, while text remains a largely untapped resource. Especially in a global marketplace where being first to identify and respond to customer needs and expectations imparts an unbeatable competitive advantage, text represents a source of immense potential value. Unfortunately, there is no reliable, cost-effective technology for extracting analytical insights from the huge and ever-growing volume of text available online and other digital sources, as well as from paper documents--until now. Zusammenfassung A reliable, cost-effective approach to extracting priceless business information from all sources of text Excavating actionable business insights from data is a complex undertaking, and that complexity is magnified by an order of magnitude when the focus is on documents and other text information. Inhaltsverzeichnis Foreword 1 Chapter 1: What is Text Mining? 1 1.1 What is it? 1 1.1.1 What is text mining in practice? 1 1.1.2 Where does text mining fit? 1 1.2 Why we care about text mining? 1 1.2.1 What are the consequences of ignoring text? 1 1.2.2 What are the benefits of text mining? 1 1.2.3 Setting Expectations: When text mining should (and should not) be used. 1 1.3 A basic workflow. How the process works. 1 1.4 What tools do I need to get started with this? 1 1.5 A Simple Example 1 1.6 A Real World Use Case 1 1.7 Summary 1 Chapter 2: Basics of text mining 1 2.1 What is Text Mining in a practical sense? 1 2.2 Types of Text Mining: Bag of Words. 1 2.2.1 Types of Text Mining: Syntactic Parsing. 1 2.3 The text mining process in context 1 2.4 String Manipulation: Number of Characters & Substitutions 1 2.4.1 String Manipulations: Paste, Character Splits & Extractions 1 2.5 Keyword Scanning 1 2.6 String Packages stringr & stringi 1 2.7 Preprocessing Steps for Bag of Words Text Mining 1 2.8 Spell Check 1 2.9 Frequent Terms & Associations 1 2.9 Delta Assist Wrap Up 1 ...

List of contents

Foreword 1
 
Chapter 1: What is Text Mining? 1
 
1.1 What is it? 1
 
1.1.1 What is text mining in practice? 1
 
1.1.2 Where does text mining fit? 1
 
1.2 Why we care about text mining? 1
 
1.2.1 What are the consequences of ignoring text? 1
 
1.2.2 What are the benefits of text mining? 1
 
1.2.3 Setting Expectations: When text mining should (and should not) be used. 1
 
1.3 A basic workflow. How the process works. 1
 
1.4 What tools do I need to get started with this? 1
 
1.5 A Simple Example 1
 
1.6 A Real World Use Case 1
 
1.7 Summary 1
 
Chapter 2: Basics of text mining 1
 
2.1 What is Text Mining in a practical sense? 1
 
2.2 Types of Text Mining: Bag of Words. 1
 
2.2.1 Types of Text Mining: Syntactic Parsing. 1
 
2.3 The text mining process in context 1
 
2.4 String Manipulation: Number of Characters & Substitutions 1
 
2.4.1 String Manipulations: Paste, Character Splits & Extractions 1
 
2.5 Keyword Scanning 1
 
2.6 String Packages stringr & stringi 1
 
2.7 Preprocessing Steps for Bag of Words Text Mining 1
 
2.8 Spell Check 1
 
2.9 Frequent Terms & Associations 1
 
2.9 Delta Assist Wrap Up 1
 
2.10 Summary 1
 
Chapter 3: Common Text Mining Visualizations 1
 
3.1 A tale of two (or three) cultures 1
 
3.2 Simple Exploration: Term Frequency, Associations & Word Networks 1
 
3.2.1 Term Frequency 1
 
3.2.2 Word Associations 1
 
3.2.3 Word Networks 1
 
3.3 Simple Word Clusters: Hierarchical Dendrograms 1
 
3.4 Word Clouds: Overused but Effective 1
 
3.4.1 One Corpus Word Clouds 1
 
3.4.2 Comparing and Contrasting Corpora in Word Clouds 1
 
3.4.3 Polarized Tag Plot 1
 
3.5 Summary 1
 
Chapter 4: Sentiment Scoring 1
 
4.1 What is Sentiment Analysis? 1
 
4.2 Sentiment Scoring: Parlor Trick or Insightful? 1
 
4.3 Polarity: Simple Sentiment Scoring 1
 
4.3.1 Subjectivity Lexicons 1
 
4.3.2 Qdap's Scoring for positive and negative word choice 1
 
4.3.3 Revisiting Word Clouds...Sentiment Word Clouds 1
 
4.4 Emoticons :) Dealing with these perplexing clues 1
 
4.4.1 Symbol-Based Emoticons Native to R 1
 
4.4.2 Punctuation Based Emoticons 1
 
4.4.3 Emoji 1
 
4.5 R's Archived Sentiment Scoring Library 1
 
4.5 Sentiment the tidytext way 1
 
4.6 Airbnb.com Boston Wrap Up 1
 
4.7 Summary 1
 
Chapter 5: Hidden Structures: Clustering, String Distance, Text Vectors & Topic Modeling 1
 
5.1 What is clustering? 1
 
5.1.1 K Means Clustering 1
 
5.1.2 Spherical K Means Clustering 1
 
5.1.3 K Mediod Clustering 1
 
5.1.4 Evaluating the cluster approaches 1
 
5.2 Calculating & Exploring String Distance 1
 
5.2.1 What is string distance? 1
 
5.2.2 Fuzzy Matching-amatch, ain 1
 
5.2.3 Similarity Distances- stringdist, stringdistmatrix 1
 
5.3 LDA Topic Modeling Explained 1
 
5.3.2 Topic Modeling Case Study 1
 
5.3.2 LDA &LDAvis 1
 
5.4 Text to Vectors using "text2vec" 1
 
5.4.1 text2vec 1
 
5.5 Summary 1
 
Chapter 6: Document Classification: Finding Clickbait from Headlines 1
 
6.1 What is document classification? 1
 
6.2 Clickbait Case Study 1
 
6.2.2 Session & Data Set Up 1
 
6.2.3 GLMNET Training 1
 
6.2.4 GLMNET Test Predictions 1
 
6.2.5 Test Set Evaluation 1
 
6.2.6 Finding the most impactful words 1<

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.