Fr. 220.00

Fragmentation: Toward Accurate Calculations on Complex Molecular - System

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles. These methods work by subdividing a system into subunits, called fragments or subsystems or domains. Calculations are performed on each fragment and then the results are combined to predict properties for the whole system.
 
Topics covered include:
* Fragmentation methods
* Embedding methods
* Explicitly correlated local electron correlation methods
* Fragment molecular orbital method
* Methods for treating large molecules
 
This book is aimed at academic researchers who are interested in computational chemistry, computational biology, computational materials science and related fields, as well as graduate students in these fields.

List of contents

List of Contributors xi
 
Preface xv
 
1 Explicitly Correlated Local Electron Correlation Methods 1
Hans-Joachim Werner, Christoph Koppl, Qianli Ma, and Max Schwilk
 
1.1 Introduction 1
 
1.2 Benchmark Systems 3
 
1.3 Orbital-Invariant MP2 Theory 6
 
1.4 Principles of Local Correlation 9
 
1.5 Orbital Localization 10
 
1.6 Local Virtual Orbitals 12
 
1.7 Choice of Domains 24
 
1.8 Approximations for Distant Pairs 26
 
1.9 Local Coupled-Cluster Methods (LCCSD) 33
 
1.10 Triple Excitations 41
 
1.11 Local Explicitly Correlated Methods 41
 
1.12 Technical Aspects 53
 
1.13 Comparison of Local Correlation and Fragment Methods 57
 
1.14 Summary 60
 
Appendix A: The LCCSD Equations 63
 
Appendix B: Derivation of the Interaction Matrices 65
 
References 67
 
2 Density and Potential Functional Embedding: Theory and Practice 81
Kuang Yu, Caroline M. Krauter, Johannes M. Dieterich, and Emily A. Carter
 
2.1 Introduction 81
 
2.2 Theoretical Background 82
 
2.3 Density Functional Embedding Theory 84
 
2.4 Potential Functional Embedding Theory 101
 
2.5 Summary and Outlook 109
 
Acknowledgments 111
 
References 111
 
3 Modeling and Visualization for the Fragment Molecular Orbital Method with the Graphical User Interface FU, and Analyses of Protein-Ligand Binding 119
Dmitri G. Fedorov and Kazuo Kitaura
 
3.1 Introduction 119
 
3.2 Overview of FMO 120
 
3.3 Methodology 120
 
3.4 GUI Development 128
 
3.5 Conclusions 136 Acknowledgments 137 References 137
 
4 Molecules-in-Molecules Fragment-Based Method for the Accurate Evaluation of Vibrational and Chiroptical Spectra for Large Molecules 141
K. V. Jovan Jose and Krishnan Raghavachari
 
4.1 Introduction 141
 
4.2 Computational Methods and Theory 142
 
4.3 Results and Discussion 146
 
4.4 Summary 157
 
4.5 Conclusions 158 Acknowledgments 159 References 159
 
5 Effective Fragment Molecular Orbital Method 165
Casper Steinmann and Jan H. Jensen
 
5.1 Introduction 165
 
5.2 Effective Fragment Molecular Orbital Method 168
 
5.3 Summary and Future Developments 180
 
References 180
 
6 Effective Fragment Potential Method: Past, Present, and Future 183
Lyudmila V. Slipchenko and Pradeep K. Gurunathan
 
6.1 Overview of the EFP Method 183
 
6.2 Milestones in the Development of the EFP Method 185
 
6.3 Present: Chemistry at Interfaces and Photobiology 192
 
6.4 Future Directions and Outlook 202
 
References 203
 
7 Nucleation Using the Effective Fragment Potential and Two-Level Parallelism 209
Ajitha Devarajan, Alexander Gaenko, Mark S. Gordon, and Theresa L. Windus
 
7.1 Introduction 209
 
7.2 Methods 211
 
7.3 Results 217
 
7.4 Conclusions 223
 
Acknowledgments 223
 
References 224
 
8 Five Years of Density Matrix Embedding Theory 227
Sebastian Wouters, Carlos A. Jime´nez-Hoyos, and Garnet K.L. Chan
 
8.1 Quantum Entanglement 227
 
8.2 Density Matrix Embedding Theory 228
 
8.3 Bath Orbitals from a Slater Determinant 230
 
8.4 The Embedding Hamiltonian 232
 
8.5 Self-Consistency 234
 
8.6 Green's Functions 236
 
8.7 Overview of the Literature 237
 
8.8 The One-Band Hubbard Model on the Square Lattice 237
 
8.9 Dissociation of a Linear Hydrogen Chain 240
 
8.10 Summary 240
 
Acknowledgments 241
 
References 241
 

About the author










Edited by
MARK S. GORDON,
Department of Chemistry, Iowa State University, Ames, USA

Summary

Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.