Fr. 49.50

Topology, Calculus and Approximation

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdös, Fejér, Stieltjes, and Turán.

The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdös and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations.
Students of both pure and applied mathematics, as well as physics and engineering should find this textbook useful. Only basic results of one-variable calculus and linear algebra are used, and simple yet pertinent examples and exercises illustrate the usefulness of most theorems. Many of these examples are new or difficult to locate in the literature, and so the original sources of most notions and results are given to help readers understand the development of the field.

List of contents

Part 1. Topology.- Chapter 1. Metric spaces.- Chapter 2. Topological spaces.- Chapter 3. Normed spaces.- Part 2. Differential calculus.- Chapter 4. The Derivative.- Chapter 5. Higher-order derivatives.- Chapter 6. Ordinary differential equations.- Chapter 7. Implicit functions and their applications.- Part 3. Approximation methods.- Chapter 8. Interpolation.- Chapter 9. Orthogonal polynomials.- Chapter 10. Numerical integration.- Chapter 11. Finding roots.- Chapter 12. Numerical solution of differential equations.

About the author

Vilmos Komornik has studied in Budapest, Hungary, and has taught in Hungary and France for nearly 40 years. His main research fields are control theory of partial differential equations and combinatorial number theory. He has made a number of contributions to the theory of J.L. Lions on exact controllability and stabilization and has co-authored several papers on expansions in noninteger bases with P. Erdős. He is an external member of the Hungarian Academy of Sciences.

Summary

Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdos, Fejér, Stieltjes, and Turán.

Product details

Authors Vilmos Komornik
Publisher Springer, Berlin
 
Original title Précis d'analyse réelle - Topologie - Calcul différentiel - Méthodes d'approximation, vol - 1
Languages English
Product format Paperback / Softback
Released 01.01.2017
 
EAN 9781447173151
ISBN 978-1-4471-7315-1
No. of pages 382
Dimensions 154 mm x 233 mm x 23 mm
Weight 625 g
Illustrations XIV, 382 p. 64 illus., 1 illus. in color.
Series Springer Undergraduate Mathematics Series
Springer Undergraduate Mathema
Springer Undergraduate Mathematics Series
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.