Fr. 190.00

Statistical and Machine-Learning Data Mining: - Techniques for Better Predictive Modeling Analysis of Big Data,

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining.


List of contents

Preface to Third Edition
Preface of Second Edition
Acknowledgments
Author
1. Introduction
2. Science Dealing with Data: Statistics and Data Science
3. Two Basic Data Mining Methods for Variable Assessment
4. CHAID-Based Data Mining for Paired-Variable Assessment
5. The Importance of Straight Data Simplicity and Desirability for Good Model-Building Practice
6. Symmetrizing Ranked Data: A Statistical Data Mining Method for Improving the Predictive Power of Data
7. Principal Component Analysis: A Statistical Data Mining Method for Many-Variable Assessment
8. Market Share Estimation: Data Mining for an Exceptional Case
9. The Correlation Coefficient: Its Values Range between Plus and Minus 1, or Do They?
10. Logistic Regression: The Workhorse of Response Modeling
11. Predicting Share of Wallet without Survey Data
12. Ordinary Regression: The Workhorse of Profit Modeling
13. Variable Selection Methods in Regression: Ignorable Problem, Notable Solution
14. CHAID for Interpreting a Logistic Regression Model
15. The Importance of the Regression Coefficient
16. The Average Correlation: A Statistical Data Mining Measure for Assessment of Competing Predictive Models and the Importance of the Predictor Variables
17. CHAID for Specifying a Model with Interaction Variables
18. Market Segmentation Classification Modeling with Logistic Regression
19. Market Segmentation Based on Time-Series Data Using Latent Class Analysis
20. Market Segmentation: An Easy Way to Understand the Segments
21. The Statistical Regression Model: An Easy Way to Understand the Model
22. CHAID as a Method for Filling in Missing Values
23. Model Building with Big Complete and Incomplete Data
24. Art, Science, Numbers, and Poetry
25. Identifying Your Best Customers: Descriptive, Predictive, and Look-Alike Profiling
26. Assessment of Marketing Models
27. Decile Analysis: Perspective and Performance
28. Net T-C Lift Model: Assessing the Net Effects of Test and Control Campaigns
29. Bootstrapping in Marketing: A New Approach for Validating Models
30. Validating the Logistic Regression Model: Try Bootstrapping
31. Visualization of Marketing Models: Data Mining to Uncover Innards of a Model
32. The Predictive Contribution Coefficient: A Measure of Predictive Importance
33. Regression Modeling Involves Art, Science, and Poetry, Too
34. Opening the Dataset: A Twelve-Step Program for Dataholics
35. Genetic and Statistic Regression Models: A Comparison
36. Data Reuse: A Powerful Data Mining Effect of the GenIQ Model
37. A Data Mining Method for Moderating Outliers Instead of Discarding Them
38. Overfitting: Old Problem, New Solution
39. The Importance of Straight Data: Revisited
40. The GenIQ Model: Its Definition and an Application
41. Finding the Best Variables for Marketing Models
42. Interpretation of Coefficient-Free Models
43. Text Mining: Primer, Illustration, and TXTDM Software
44. Some of My Favorite Statistical Subroutines
Index

About the author

Bruce Ratner, The Significant StatisticianTM, is President and Founder of DM STAT-1 Consulting, the ensample for Statistical Modeling, Analysis and Data Mining, and Machine-learning Data Mining in the DM Space. DM STAT-1 specializes in all standard statistical techniques, and methods using machine-learning/statistics algorithms, such as its patented GenIQ Model, to achieve its clients' goals – across industries including Direct and Database Marketing, Banking, Insurance, Finance, Retail, Telecommunications, Healthcare, Pharmaceutical, Publication & Circulation, Mass & Direct Advertising, Catalog Marketing, e-Commerce, Web-mining, B2B, Human Capital Management, Risk Management, and Nonprofit Fundraising. Bruce holds a doctorate in mathematics and statistics, with a concentration in multivariate statistics and response model simulation. His research interests include developing hybrid-modeling techniques, which combine traditional statistics and machine learning methods. He holds a patent for a unique application in solving the two-group classification problem with genetic programming.

Summary

The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining.

Additional text

"I bought your book as it seemed to have the right mixture of statistical theory, practice, and common sense – finally! You can find the first often; the second occasionally; but the third, esp. in combination with the first two – never. I cannot thank you enough, Bruce! You are brilliant at assimilating, stating the underlying principles of analyses." ~Sandra Hendren, Sr. Lecturer, Harvard
"Bruce Ratner’s recent 3rd edition of "Statistical and Machine-Learning Data Mining" is the best I’ve seen in my long career. It provides insightful methods for data mining, and innovative techniques for predictive analytics. The book is a valuable resource for experienced and newbie data scientists. Bruce’s book is my new data science bible. It is written in a clear style, and is an enjoyable read as it includes historical notes, which flow with the material." ~Jack Theurer, President, G. Theurer Assoc. Inc.
"Your book has been very helpful when I was reviewing the manual for the Automatic Linear Modeling (ALM) in SPSS. It offers many insightful perspectives to use for future ALM features and improvements. This book is an excellent contribution to the literature of statistics, data mining, and machine learning. Thank you, Bruce." ~Patrick Yan, PhD, Professor, Arizona State Univ.
"I heard one of my instructors in Coursera mention Bruce Ratner’s new book "Statistical and Machine-Learning Data Mining" during an online chat when he became tired of answering questions." ~Mike Richardson, Head of Hardware, Smartfrog, Inc.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.