Fr. 135.00

Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

In his PhD dissertation Martin Bo Nielsen performs observational studies of rotation in stars like the Sun. The interior rotation in stars is thought to be one of the driving mechanisms of stellar magnetic activity, but until now this mechanism was unconstrained by observational data.
NASA's Kepler space mission provides high-precision observations of Sun-like stars which allow rotation to be inferred using two independent methods: asteroseismology measures the rotation of the stellar interior, while the brightness variability caused by features on the stellar surface trace the rotation of its outermost layers. By combining these two techniques Martin Bo Nielsen was able to place upper limits on the variation of rotation with depth in five Sun-like stars. These results suggest that the interior of other Sun-like stars also rotate in much the same way as our own Sun.

List of contents

Introduction.- Rotation Periods of 12 000 Main-sequence Kepler Stars.- Rotational Splitting as a Function of Mode Frequency for Six Sunlike Stars.- Constraining Differential Rotation of Sun-like Stars from Asteroseismic and Starspot Rotation Periods.- Discussion: Constraining Interior Rotational Shear.- Appendices.

About the author

Martin Bo Nielsen received his B.Sc and M.Sc degrees from Aarhus University in Denmark, during which he spent one year as a student support astronomer at the Nordic Optical Telescope on La Palma, Spain. This was followed by a PhD on the topic of differential rotation in Sun-like stars, at Georg-August-Universität in Göttingen, under the supervision of Prof. Laurent Gizon and Dr. Hannah Schunker.     

Summary

In his PhD dissertation Martin Bo Nielsen performs observational studies of rotation in stars like the Sun. The interior rotation in stars is thought to be one of the driving mechanisms of stellar magnetic activity, but until now this mechanism was unconstrained by observational data.
NASA’s Kepler space mission provides high-precision observations of Sun-like stars which allow rotation to be inferred using two independent methods: asteroseismology measures the rotation of the stellar interior, while the brightness variability caused by features on the stellar surface trace the rotation of its outermost layers. By combining these two techniques Martin Bo Nielsen was able to place upper limits on the variation of rotation with depth in five Sun-like stars. These results suggest that the interior of other Sun-like stars also rotate in much the same way as our own Sun.

Product details

Authors Martin Bo Nielsen
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2017
 
EAN 9783319509884
ISBN 978-3-31-950988-4
No. of pages 101
Dimensions 157 mm x 240 mm x 10 mm
Weight 297 g
Illustrations XVI, 101 p. 29 illus., 18 illus. in color.
Series Springer Theses
Springer
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Astronomy

B, Astrophysics, Astronomy, space & time, Physics and Astronomy, Astronomy, Observations and Techniques, Astronomy—Observations, Observations, Astronomical, Astrophysics and Astroparticles

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.