Fr. 120.00

Bayesian Models for Astrophysical Data - Using R, Jags, Python, and Stan

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Joseph M. Hilbe is Solar System Ambassador with NASA's Jet Propulsion Laboratory, California Institute of Technology, Adjunct Professor of Statistics at Arizona State University, and Professor Emeritus at the University of Hawaii. He is currently President of the International Astrostatistics Association (IAA) and was awarded the IAA's 2016 Outstanding Contributions to Astrostatistics medal, the association's top award. Hilbe is an elected Fellow of both the American Statistical Association and the IAA and is a full member of the American Astronomical Society. He has authored nineteen books on statistical modeling, including leading texts on modeling count and binomial data. His book, Modeling Count Data (Cambridge, 2014) received the 2015 PROSE honorable mention for books in mathematics. Rafael S. de Souza is a researcher at Eötvos Loránd University, Budapest. He is currently Vice-President for development of the International Astrostatistics Association (IAA) and was awarded the IAA's 2016 Outstanding Publication in Astrostatistics award. He has authored dozens of scientific papers, serving as the leading author for over twenty of them. Emille E. O. Ishida is a researcher at the Université Clermont-Auvergne (Université Blaise Pascal), France. She is cochair of the Cosmostatistics Initiative and coordinator of its Python-related projects. She is a specialist in machine learning applications to astronomy with special interests in type Ia supernovae spectral characterization, classification, and cosmology. She has been the lead author of numerous articles in prominent astrophysics journals and currently serves as chair of the IAA public relations committee. Klappentext A hands-on guide to Bayesian models with R! JAGS! Python! and Stan code! for a wide range of astronomical data types. Zusammenfassung This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R! JAGS! Python! and Stan code! to use directly or to adapt. A must-have for astronomers! its concrete focus on modeling! analysis! and interpretation will also be attractive to researchers in the sciences more broadly. Inhaltsverzeichnis Preface; 1. Astrostatistics; 2. Prerequisites; 3. Frequentist vs Bayesian methods; 4. Normal linear models; 5. GLM part I - continuous and binomial models; 6. GLM part II - count models; 7. GLM part III - zero-inflated and hurdle models; 8. Hierarchical GLMMs; 9. Model selection; 10. Astronomical applications; 11. The future of astrostatistics; Appendix A. Bayesian modeling using INLA; Bibliography; Index....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.