Read more
A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.
List of contents
Introduction; 1. Homogenous spaces; 2. Linear geometries; 3. Circular geometries; 4. Real collineation groups; 5. Equiareal collineations; 6. Real isometry groups; 7. Complex spaces; 8. Complex collineation groups; 9. Circularities and concatenations; 10. Unitary isometry groups; 11. Finite symmetry groups; 12. Euclidean symmetry groups; 13. Hyperbolic coxeter groups; 14. Modular transformations; 15. Quaternionic modular groups.
About the author
Norman W. Johnson was Professor Emeritus of Mathematics at Wheaton College, Massachusetts. Johnson authored and co-authored numerous journal articles on geometry and algebra, and his 1966 paper 'Convex Polyhedra with Regular Faces' enumerated what have come to be called the Johnson solids. He was a frequent participant in international conferences and a member of the American Mathematical Society and the Mathematical Association of America.
Summary
This readable exposition uses linear algebra and transformation groups to differentiate and connect both Euclidean and other geometries. Written for graduate students, the book includes numerous exercises and covers both classical results and new research in the field.