Fr. 199.00

Linear Stochastic Systems - A Geometric Approach to Modeling, Estimation and Identification

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notionof the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.

List of contents

Introduction.- Geometry of Second-Order Random Processes.- Spectral Representation of Stationary Processes.- Innovations, Wold Decomposition, and Spectral Factorization.- Wold Decomposition and Spectral Factorization in Continuous Time.- Linear Finite-Dimensional Stochastic Systems.- The Geometry of Splitting Subspaces.- Markovian Representations.- Proper Markovian Representations in Hardy Space.- Stochastic Realization Theory in Continuous Time.- Stochastic Balancing and Model Reduction.- Finite-Interval Stochastic Realization and Partial Realization Theory.- Subspace Identification for Time Series.- Zero Dynamics and the Geometry of the Riccati Inequality.- Smoothing and Interpolation.- Acausal Linear Stochastic Models and Spectral Factorization.- Stochastic Systems with Inputs.- Appendix A. Basic Principles of Deterministic Realization Theory.- Appendix B. Some Topics in Linear Algebra and Hilbert Space Theory

Summary

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notionof the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.

Additional text

“The purpose of this book is to present the mathematical background necessary for understanding the linear state-space modeling of second-order random processes and its applications to estimation and identification theory. … this monograph is an excellent reference for researchers interested in geometric theory of stochastic realization and its applications.” (Viorica M. Ungureanu, Mathematical Reviews, January, 2016)

Report

"The purpose of this book is to present the mathematical background necessary for understanding the linear state-space modeling of second-order random processes and its applications to estimation and identification theory. ... this monograph is an excellent reference for researchers interested in geometric theory of stochastic realization and its applications." (Viorica M. Ungureanu, Mathematical Reviews, January, 2016)

Product details

Authors Ander Lindquist, Anders Lindquist, Giorgio Picci
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783662526187
ISBN 978-3-662-52618-7
No. of pages 781
Dimensions 156 mm x 45 mm x 248 mm
Weight 1214 g
Illustrations XV, 781 p. 37 illus.
Series Series in Contemporary Mathematics
Series in Contemporary Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

B, Mathematics and Statistics, Control and Systems Theory, Probability Theory and Stochastic Processes, Systems Theory, Control, Probability & statistics, Probabilities, Stochastics, Probability Theory, Control engineering, Automatic control engineering, System Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.