Fr. 135.00

Extracting Physics from Gravitational Waves - Testing the Strong-field Dynamics of General Relativity and Inferring the Large-scale Structure of the Universe

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Tjonnie Li's thesis covers two applications of Gravitational Wave astronomy: tests of General Relativity in the strong-field regime and cosmological measurements. The first part of the thesis focuses on the so-called TIGER, i.e. Test Infrastructure for General Relativity, an innovative Bayesian framework for performing hypothesis tests of modified gravity using ground-based GW data. After developing the framework, Li simulates a variety of General Relativity deviations and demonstrates the ability of the aforementioned TIGER to measure them. The advantages of the method are nicely shown and compared to other, less generic methods. Given the extraordinary implications that would result from any measured deviation from General Relativity, it is extremely important that a rigorous statistical approach for supporting these results would be in place before the first Gravitational Wave detections begin. In developing TIGER, Tjonnie Li shows a large amount of creativity and originality, and his contribution is an important step in the direction of a possible discovery of a deviation (if any) from General Relativity.
In another section, Li's thesis deals with cosmology, describing an exploratory study where the possibility of cosmological parameters measurement through gravitational wave compact binary coalescence signals associated with electromagnetic counterparts is evaluated. In particular, the study explores the capabilities of the future Einstein Telescope observatory. Although of very long term-only applicability, this is again a thorough investigation, nicely put in the context of the current and the future observational cosmology.

List of contents

Part I General Introduction.- Gravitational waves in the linearised theory of General Relativity.- Gravitational waves in the post-Newtonian formalism.- Gravitational waves: detection and sources.- Bayesian Inference.- Computational methods.- Part II Testing the Strong-field Dynamics of General Relativity.- Introduction.- Test Infrastructure for General Relativity (TIGER).- Results.- Discussion.- Part III Inferring the Large-scale Structure of the Universe.- Introduction.- Cosmography.- Electromagnetic counterpart as redshift measurement.- Concluding remarks.- A Systematic multipole expansion.- Bibliography.- Popular-science summary.

About the author

Tjonnie Li is the winner of the 2013 Stefano Braccini Thesis Prize awarded by the Gravitational Wave International Committee. He received his PhD in Physics in 2013 from the University of Amsterdam. He then became a Postdoctoral Fellow at the LIGO Laboratory, California Institute of Technology (USA),  developing analyses for detecting binary black holes and explorations into the strong-field regime of gravity. Dr. Li is a member of the LIGO Scientific Collaboration with focus on compact binary systems.

Summary

 Tjonnie Li's thesis covers two applications of Gravitational Wave astronomy: tests of General Relativity in the strong-field regime and cosmological measurements. The first part of the thesis focuses on the so-called TIGER, i.e. Test Infrastructure for General Relativity, an innovative Bayesian framework for performing hypothesis tests of modified gravity using ground-based GW data. After developing the framework, Li simulates a variety of General Relativity deviations and demonstrates the ability of the aforementioned TIGER to measure them. The advantages of the method are nicely shown and compared to other, less generic methods. Given the extraordinary implications that would result from any measured deviation from General Relativity, it is extremely important that a rigorous statistical approach for supporting these results would be in place before the first Gravitational Wave detections begin. In developing TIGER, Tjonnie Li shows a large amount of creativity and originality, and his contribution is an important step in the direction of a possible discovery of a deviation (if any) from General Relativity.
In another section, Li's thesis deals with cosmology, describing an exploratory study where the possibility of cosmological parameters measurement through gravitational wave compact binary coalescence signals associated with electromagnetic counterparts is evaluated. In particular, the study explores the capabilities of the future Einstein Telescope observatory. Although of very long term-only applicability, this is again a thorough investigation, nicely put in the context of the current and the future observational cosmology.

Product details

Authors Tjonnie G F Li, Tjonnie G. F. Li
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783319366647
ISBN 978-3-31-936664-7
No. of pages 235
Dimensions 155 mm x 14 mm x 235 mm
Weight 406 g
Illustrations XXVI, 235 p. 47 illus., 30 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Gravitation, B, Mathematische Physik, Physics, Cosmology, Theoretical, Mathematical and Computational Physics, Physics and Astronomy, Relativity physics, Mathematical physics, Numerical and Computational Physics, Simulation, Classical and Quantum Gravity, Classical and Quantum Gravitation, Relativity Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.