Fr. 135.00

Group 2 Mediated Dehydrocoupling

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book presents an in-depth study into the utility of s-bond metathesis in Group 2 mediated reactivity. A comprehensive introduction defines the state of the art in both Group 2 mediated catalysis and dehydrocoupling. Structural investigations giving rise to a range of mixed s-block metal hydrides including a remarkable dodecabimetallic decahydride are then described. Subsequent extensive mechanistic work focussing on both silicon-nitrogen and boron-nitrogen dehydrocoupling gives insights into both congeneric effects down Group 2 and ligand effects centring upon magnesium. These studies show the striking effects of these factors, as well as the electronic nature of the hydridic coupling partner. Finally, the unprecedented introduction of single-electron transfer steps into Group 2 catalytic manifolds is described. The use of the stable radical TEMPO to induce single-electron transfer to substituents bound to Group 2 centres coupled with s-bond metathesis allows a novel hydrogen release from silanes.

List of contents

Introduction.- Group 1-Group 2 Bimetallic Alkyls and Hydrides.- Silicon-nitrogen Dehydrocoupling.- Boron-nitrogen Dehydrocoupling.- Single Electron Transfer Steps in Group 2 Catalysis.- Summary.- Future Work.

About the author

David received his first degree (MChem (Hons)) in Chemistry with Industrial Training) in 2011 from the University of Bath, Bath, UK. David remained at Bath to subsequently work on Group 2 chemistry in the laboratory of Professor Michael Hill and was awarded his PhD for this work in 2014. David then undertook a short postdoctoral appointment focussing on novel oligo- and polystannanes collaborating between Bath and Professor Roland Fischer at TU Graz, Austria. In 2015, David took up a Lindemann Postdoctoral Fellowship researching p-block mediated small molecule activation in the laboratory of Professor Philip Power at UC Davis, USA.

Summary

This book presents an in-depth study into the utility of σ-bond metathesis in Group 2 mediated reactivity. A comprehensive introduction defines the state of the art in both Group 2 mediated catalysis and dehydrocoupling. Structural investigations giving rise to a range of mixed s-block metal hydrides including a remarkable dodecabimetallic decahydride are then described. Subsequent extensive mechanistic work focussing on both silicon-nitrogen and boron-nitrogen dehydrocoupling gives insights into both congeneric effects down Group 2 and ligand effects centring upon magnesium. These studies show the striking effects of these factors, as well as the electronic nature of the hydridic coupling partner.  Finally, the unprecedented introduction of single-electron transfer steps into Group 2 catalytic manifolds is described. The use of the stable radical TEMPO to induce single-electron transfer to substituents bound to Group 2 centres coupled with σ-bond metathesis allows a novel hydrogen release from silanes.

Product details

Authors David J Liptrot, David J. Liptrot
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783319370330
ISBN 978-3-31-937033-0
No. of pages 162
Dimensions 154 mm x 236 mm x 11 mm
Weight 288 g
Illustrations XV, 162 p. 169 illus., 3 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Chemistry > Physical chemistry

B, ORGANOMETALLIC CHEMISTRY, Quanten- und theoretische Chemie, Metallorganische Chemie, Catalysis, Chemistry and Materials Science, Quantum & theoretical chemistry, Theoretical and Computational Chemistry, Chemistry, Physical and theoretical, Theoretical Chemistry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.