Fr. 70.00

Deformations of Surface Singularities

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry.
The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections.

List of contents

Altmann, K. and Kastner, L.: Negative Deformations of Toric Singularities that are Smooth in Codimension Two.- Bhupal, M. and Stipsicz, A.I.: Smoothing of Singularities and Symplectic Topology.- Ilten, N.O.: Calculating Milnor Numbers and Versal Component Dimensions from P-Resolution Fans.- Némethi, A: Some Meeting Points of Singularity Theory and Low Dimensional Topology.- Stevens, J.: The Versal Deformation of Cyclic Quotient Singularities.- Stevens, J.: Computing Versal Deformations of Singularities with Hauser's Algorithm.- Van Straten, D.: Tree Singularities: Limits, Series and Stability.

Summary

The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples.  The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry.
The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections. 
 

Product details

Assisted by Andra Némethi (Editor), Andras Némethi (Editor), András Némethi (Editor), Szilárd (Editor), Szilárd (Editor), Agnes Szilárd (Editor), Ágnes Szilárd (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783662524695
ISBN 978-3-662-52469-5
No. of pages 280
Dimensions 156 mm x 18 mm x 236 mm
Weight 441 g
Illustrations VII, 280 p. 137 illus., 114 illus. in color.
Series Bolyai Society Mathematical Studies
Bolyai Society Mathematical Studies
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

B, Algebraische Geometrie, Mathematics and Statistics, Algebraic Geometry, Algebraic Topology

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.