Fr. 135.00

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time.
Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent's lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.

List of contents

Introduction .- Background and Problem Specification.- Real Time Architecture.- The TEXPLORE Algorithm.- Empirical Evaluation.- Further Examination of Exploration.- Related Work.- Discussion and Conclusion.- TEXPLORE Pseudo-Code.

Summary

This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time.
Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.

Product details

Authors Todd Hester
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783319375106
ISBN 978-3-31-937510-6
No. of pages 165
Dimensions 155 mm x 10 mm x 235 mm
Weight 282 g
Illustrations XIV, 165 p. 55 illus. in color.
Series Studies in Computational Intelligence
Studies in Computational Intelligence
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, Robotics, Automation, engineering, Computer Vision, Image Processing and Computer Vision, Computational Intelligence, Optical data processing, Control, Robotics, Automation, Image processing, Robotics and Automation

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.