Fr. 73.00

Essential Quantum Mechanics for Electrical Engineers

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more

Der Autor dieses Lehrbuchs ist seit über 25 Jahren Dozent für Quantenmechanik in den Fachrichtungen Elektrotechnik und Informatik. Das Fachbuch ist wissenschaftlich fundiert und gut geschrieben, überzeugt durch eine ausgewogene Darstellung notwendiger formaler Mathematik und Text.
Die Einführung fasst die Grundkonzepte der klassischen Physik zusammen und stellt einiger ihrer Versäumnisse heraus, die sich aus Phänomenen in Verbindung mit der Lichttechnik ergeben. Diese werden in den darauffolgenden drei Kapiteln ausführlich analysiert. Kapitel 5 geht über das Dualitätsprinzip hinaus und erläutert die Partikelkonzepte der Quantenmechanik sowie deren Folgen für die Elektrotechnik. In den Kapiteln 6 bis 8 werden die mathematischen Grundkonstruktionen beschrieben, mit denen sich der Zustand von Partikeln und deren Eigenschaften ableiten und vorhersagen lassen. Die beiden weiteren Kapitel zeigen zwei Beispiele hierfür mit Anwendungen von LEDs, Infrarotdetektoren, Quantenkaskadenlasern, Zener-Dioden und Flash-Speichern. In den letzten Kapiteln werden die Folgen der Quantenmechanik für die chemischen Eigenschaften von Atomen und anderen, aus vielen Elektronen bestehenden Systemen erörtert, abgerundet durch einen kurzen Einblick in die möglichen Hardwarekomponenten für die Quanteninformationsverarbeitung.
Zu den vielfältigen didaktischen Merkmalen gehören auch Lernziele, Kapitelzusammenfassungen, Fragen zur Selbstüberprüfung sowie Problemlösungen. In den beiden Anhängen sind die notwendigen Kenntnisse der klassischen Physik und Mathematik zusammengefasst.

List of contents

1 INTRODUCTION. CLASSICAL PHYSICS AND THE PHYSICS OF INFORMATION TECHNOLOGY
1.1 The perception of matter in the classical physics
1.2 Axioms of the classical physics
1.3 Status and effect of the classical physics by the end of the 19th century
1.4 Physics background of the high-tech era
1.5 Developments in physics reflected by the development of lighting technology
1.6 The demand for physics in electrical engineering and informatics: today and tomorrow
1.7 Control questions and exercises
2 BLACKBODY RADIATION: THE PHYSICS OF THE INCANDESCENT LAMP AND OF THE PYROMETER
2.1 Electromagnetic radiation of heated bodies
2.2 Electromagnetic field in equilibrium with a metal cage of temperature T
2.3 Determination of the average energy per degree of freedom. Planck's law
2.4 Practical applications of Planck's law for the blackbody radiation
2.5 Significance of Planck's law for the physics
2.6 Control questions and exercises
3 PHOTONS. THE PHYSICS OF LASERS
3.1 The photoelectric effect
3.2 Practical applications of the photoelectric effect (photocell, solar cell, chemical analysis)
3.3 The Compton-Effect
3.4 The photon hypothesis of Einstein
3.5 Planck's law and the photons. Stimulated emission
3.6 The laser
3.7 Control questions and exercises
4 ELECTRONS. THE PHYSICS OF DISCHARGE LAMPS
4.1 The fluorescent lamp
4.2 Frank-Hertz-Experiment
4.3 Models of the hydrogen atom
4.4 Practical consequences of the energy quantization for discharge lamps
4.5 The de Broglie hypothesis
4.6 The Davisson - Germer Experiment
4.7 Wave - particle dualism
4.8 Control questions and exercises
5 THE PARTICLE CONCEPT OF QUANTUM MECHANICS
5.1 Particles and waves in the classical physics
5.2 Double slit experiment with a single electron
5.3 The Born - Jordan interpretation of the electron wave
5.4 Heisenberg's uncertainty principle
5.5 Particle concept of the quantum mechanics
5.6 The scale-dependence of physics
5.7 Towards a new physics
5.8 The significance of electron waves for electrical engineering
5.9 Displaying electron waves
5.10 Control questions and exercises
6 MEASUREMENT IN THE QUANTUM MECHANICS. POSTULATES 1-3
6.1 Physical restrictions for the wave function of an electron
6.2 Mathematical definitions and laws related to the wave function
6.3 Mathematical representation of the measurement by operators
6.4 Mathematical definitions and laws related to operators
6.5 Measurement in the quantum mechanics
6.6 Control questions and exercises
7 OBSERVABLES IN THE QUANTUM MECHANICS. POSTULATES 4-5. THE RELATION OF CLASSICAL AND QUANTUM MECHANICS
7.1 The canonical commutation relations of Heisenberg
7.2 The choice of operators by Schrödinger
7.3 Vector operator of the angular momentum
7.4 Energy operators and the Schrödinger equation
7.5 Time evolution of observables.
7.6 The Ehrenfest-Theorem
7.7 Control questions and exercises
8 QUANTUM MECHANICAL STATES.
8.1 Eigenstates of position
8.2 Eigenstates of momentum
8.3 Eigenstates of energy - stationary states
8.4 Free motion
8.5 Bound states
8.6 Control questions and exercises
9 THE QUANTUM WELL: THE BASIS OF MODERN LIGHT EMITTING DIODES (LEDS).
9.1 Quantum well LEDs
9.2 Energy eigenvalues in a finite quantum well
9.3 Applications in LEDs and in Detectors.
9.4 Stationary states in a finite quantum well.
9.5 The infinite quantum well
9.6 Comparison to a classical particle in a box
9.7 Control questions and exercises
10 THE TUNNEL EFFECT AND ITS ROLE IN ELECTRONICS
10.1 The scanning tunneling microscope
10.2 Electron at a potential barrier
10.3 Field emission, leakage currents, electrical breakdown, flash memories
10.4 Resonant tunneling, quantum field effect transistor, quantum cascade lasers
10.5 Control questions and exercises
11 THE HYDROGEN ATOM. QUANTUM NUMBERS. ELECTRON

About the author

Peter Deák is currently Professor of Theoretical Semiconductor Physics at the University of Bremen, Germany, and head of the Electronic Materials Group in the Bremen Center of Computational Materials Science. After obtaining his PhD at the Eötvös University of Budapest, Hungary, and post-doctoral positions at SUNY, Albany, the Max Planck Institute for Solid State Research in Stuttgart and the University of Kaiserslautern, Germany, he obtained a tenure as professor of surface physics at the Budapest Institute of Technology and Economics in 1993. He relocated to Germany in 2003 where he took up his current position in Bremen. Peter Deák has more than 25 years of experience in teaching physics to undergraduates of electrical engineering and informatics.

Summary

Der Autor dieses Lehrbuchs ist seit über 25 Jahren Dozent für Quantenmechanik in den Fachrichtungen Elektrotechnik und Informatik. Das Fachbuch ist wissenschaftlich fundiert und gut geschrieben, überzeugt durch eine ausgewogene Darstellung notwendiger formaler Mathematik und Text.
Die Einführung fasst die Grundkonzepte der klassischen Physik zusammen und stellt einiger ihrer Versäumnisse heraus, die sich aus Phänomenen in Verbindung mit der Lichttechnik ergeben. Diese werden in den darauffolgenden drei Kapiteln ausführlich analysiert. Kapitel 5 geht über das Dualitätsprinzip hinaus und erläutert die Partikelkonzepte der Quantenmechanik sowie deren Folgen für die Elektrotechnik. In den Kapiteln 6 bis 8 werden die mathematischen Grundkonstruktionen beschrieben, mit denen sich der Zustand von Partikeln und deren Eigenschaften ableiten und vorhersagen lassen. Die beiden weiteren Kapitel zeigen zwei Beispiele hierfür mit Anwendungen von LEDs, Infrarotdetektoren, Quantenkaskadenlasern, Zener-Dioden und Flash-Speichern. In den letzten Kapiteln werden die Folgen der Quantenmechanik für die chemischen Eigenschaften von Atomen und anderen, aus vielen Elektronen bestehenden Systemen erörtert, abgerundet durch einen kurzen Einblick in die möglichen Hardwarekomponenten für die Quanteninformationsverarbeitung.
Zu den vielfältigen didaktischen Merkmalen gehören auch Lernziele, Kapitelzusammenfassungen, Fragen zur Selbstüberprüfung sowie Problemlösungen. In den beiden Anhängen sind die notwendigen Kenntnisse der klassischen Physik und Mathematik zusammengefasst.

Product details

Authors Peter Deák, Peter (Prof.) Deák
Publisher Wiley-VCH
 
Languages English
Product format Paperback / Softback
Released 01.04.2017
 
EAN 9783527413553
ISBN 978-3-527-41355-3
Dimensions 184 mm x 249 mm x 11 mm
Weight 436 g
Illustrations 6 SW-Abb., 3 Farbabb., 5 Tabellen
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Physik, Quantenmechanik, Quantenphysik, Informatik, informationstechnologie, computer science, Physics, Information Technologies, Electrical & Electronics Engineering, Elektrotechnik u. Elektronik, Quantum Physics & Field Theory, Quantenphysik u. Feldtheorie, Allg. Informatik, Quantum Electronics, Quantenelektronik

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.