Fr. 179.00

Complex Fluids in Biological Systems - Experiment, Theory, and Computation

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world's foremost experts explore key topics such as:

  • Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation
  • Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood
  • The motility of microorganisms in complex fluids and the dynamics of active suspensions
  • Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows
This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.

List of contents

Part I: Introduction to Complex Fluids.- Introduction to complex fluids.- Complex fluids and soft structures in the human body.- Part II: Rheology of Complex Biological Fluids.- Theoretical microrheology.- Membrane rheology.- Rheology and mechanics of the cell cytoskeleton.- Experimental challenges of shear rheology: how to avoid bad data.-Part III: Locomotion and Active Matter.- Locomotion through complex fluids: an experimental view.- Theory of locomotion through complex fluids.- Theory of active suspensions.- Part IV: Computational Methods.- Computational challenges for simulating strongly elastic flows in biology.- Cell distribution and segregation phenomena during blood flow.

Summary

This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as:

  • Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation
  • Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood
  • The motility of microorganisms in complex fluids and the dynamics of active suspensions
  • Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows
This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.