Fr. 104.00

A Mathematical Perspective on Flight Dynamics and Control

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples.
Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian regulator, a state-feedback H-infinity optimal control scheme, and model reference adaptive control law are applied to aircraft control problems. To complete the brief, an appendix provides a compendium of the mathematical tools needed to comprehend the material presented in this brief and presents several advanced topics, such as the notion of semistability, the Smith-McMillan form of a transfer function, and the differentiation of complex functions: advanced control-theoretic ideas helpful in the analysis presented in the body of the brief.
A Mathematical Perspective on Flight Dynamics and Control will give researchers and graduate students in aerospace control an alternative, mathematically rigorous means of approaching their subject.

List of contents

Fundamentals of Rigid-Body Dynamics.- Equations of Motion of an Aircraft.- Aircraft Automatic Control.- Conclusion.- Appendix: Fundamentals of Dynamical Systems Theory.

About the author

The author is an assistant professor at the School of Aerospace and Mechanical Engineering of The University of Oklahoma and is presently teaching a graduate course in flight control. Dr. L'Afflitto holds a B.S., M.S., and Ph.D. degree in aerospace engineering and a M.S. degree in Mathematics and his research is currently focused on optimal control theory and differential games theory with applications to aerospace control problems, such as fuel-optimal path planning and formation flying.

Summary

This brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples.
Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian regulator, a state-feedback H-infinity optimal control scheme, and model reference adaptive control law are applied to aircraft control problems. To complete the brief, an appendix provides a compendium of the mathematical tools needed to comprehend the material presented in this brief and presents several advanced topics, such as the notion of semistability, the Smith–McMillan form of a transfer function, and the differentiation of complex functions: advanced control-theoretic ideas helpful in the analysis presented in the body of the brief.

A Mathematical Perspective on Flight Dynamics and Control will give researchers and graduate students in aerospace control an alternative, mathematically rigorous means of approaching their subject.

Product details

Authors Andrea L'Afflitto
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2017
 
EAN 9783319474663
ISBN 978-3-31-947466-3
No. of pages 122
Dimensions 160 mm x 237 mm x 7 mm
Weight 250 g
Illustrations XII, 122 p. 19 illus., 14 illus. in color.
Series SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Subjects Guides > Hobby, home
Natural sciences, medicine, IT, technology > Technology > Aviation and space engineering

C, Regelungstechnik, Kybernetik und Systemtheorie, astronautics, engineering, Control and Systems Theory, Systems Theory, Control, Aerospace engineering, Aerospace Technology and Astronautics, Control engineering, Automatic control engineering, System Theory, Cybernetics & systems theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.