Fr. 206.00

Decision Forests for Computer Vision and Medical Image Analysis

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests ina hands-on manner.

List of contents

Overview and Scope.- Notation and Terminology.- Part I: The Decision Forest Model.- Introduction.- Classification Forests.- Regression Forests.- Density Forests.- Manifold Forests.- Semi-Supervised Classification Forests.- Part II: Applications in Computer Vision and Medical Image Analysis.- Keypoint Recognition Using Random Forests and Random Ferns.- Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval.- Class-Specific Hough Forests for Object Detection.- Hough-Based Tracking of Deformable Objects.- Efficient Human Pose Estimation from Single Depth Images.- Anatomy Detection and Localization in 3D Medical Images.- Semantic Texton Forests for Image Categorization and Segmentation.- Semi-Supervised Video Segmentation Using Decision Forests.- Classification Forests for Semantic Segmentation of Brain Lesions in Multi-Channel MRI.- Manifold Forests for Multi-Modality Classification of Alzheimer's Disease.- Entangled Forests and Differentiable Information Gain Maximization.- Decision Tree Fields.- Part III: Implementation and Conclusion.- Efficient Implementation of Decision Forests.- The Sherwood Software Library.- Conclusions.

Summary

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests ina hands-on manner.

Additional text

From the reviews:
“This book is a comprehensive presentation of the theory and use of decision forests in a wide range of applications, centered on computer vision and medical imaging. The book is strikingly well integrated. … This is an excellent volume on the concept, theory, and application of decision forests. … I highly recommend it to those currently working in the field, as well as researchers desiring an introduction to the application of random forests for imaging applications.” (Creed Jones, Computing Reviews, March, 2014)

Report

From the reviews:
"This book is a comprehensive presentation of the theory and use of decision forests in a wide range of applications, centered on computer vision and medical imaging. The book is strikingly well integrated. ... This is an excellent volume on the concept, theory, and application of decision forests. ... I highly recommend it to those currently working in the field, as well as researchers desiring an introduction to the application of random forests for imaging applications." (Creed Jones, Computing Reviews, March, 2014)

Product details

Assisted by A. Criminisi (Editor), Antoni Criminisi (Editor), Antonio Criminisi (Editor), Shotton (Editor), Shotton (Editor), J Shotton (Editor), J. Shotton (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9781447169628
ISBN 978-1-4471-6962-8
No. of pages 368
Dimensions 155 mm x 21 mm x 235 mm
Weight 599 g
Illustrations XIX, 368 p.
Series Advances in Computer Vision and Pattern Recognition
Advances in Computer Vision an
Advances in Computer Vision and Pattern Recognition
Advances in Pattern Recognition
Subject Natural sciences, medicine, IT, technology > IT, data processing > Application software

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.