Fr. 188.00

Silicon-based Nanomaterials

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.

List of contents

Preface.- Chapter 1: Porous Silicon as Anode Material for Lithium Ion Batteries.- Chapter 2: The development of Si and Ge-based nanomaterials for high performance lithium ion battery anodes.- Chapter 3: Light Trapping in Coaxial Nanowires of c-Si Cores and a-Si Shells.- Chapter 4: Applications of Ordered Si Nanowire Array to Solar Energy Harvesting and NEMS.- Chapter 5: Synchrotron-excited photoluminescence spectroscopy of silicon- and carbon-containing quantum dots in low dimensional SiO2 matrices.- Chapter 6: Silicon nanoparticles-based light emitting capacitors.- Chapter 7: Electronic and Optical Properties of Silicon Carbide Nanostructures.- Chapter 8: Plasma Enabled Fabrication of Silicon Carbide Nanostructures.- Chapter 9: Catalyst-free chemical vapor deposition for synthesis of SiC nanowires with controlled morphology.- Chapter 10: Adhesion and Indentation fracture behavior of Silicon carbonitride nanocomposite coatings deposited by Magnetron sputtering.- Chapter 11: Impact of Defects and Doping on Electron Transport in SiCNTs.- Chapter 12: Synthesis, Properties and Applications of One-Dimensional Transition Metal Silicide Nanostructures.- Chapter 13:Integration of strain free III-V quantum dots on silicon.- Chapter 14: III-V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates.- Chapter 15: Cubic GaN on Nano-patterned 3C-SiC/Si (001) Substrates.- Index.

Summary

A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.

Product details

Assisted by Handong Li (Editor), Zhiming M Wang (Editor), Zhiming M. Wang (Editor), Jian Wu (Editor), Jiang Wu (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9781493954995
ISBN 978-1-4939-5499-5
No. of pages 409
Dimensions 156 mm x 237 mm x 25 mm
Weight 652 g
Illustrations XII, 409 p. 279 illus., 178 illus. in color.
Series Springer Series in Materials Science
Springer Series in Materials S
Springer Series in Materials Science
Subject Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.