Fr. 69.00

General Parabolic Mixed Order Systems in Lp and Applications

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel-Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier-Stokes equations with Boussinesq-Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs-Thomson correction.

List of contents

Introduction and Outline.- 1 The joint time-space H(infinity)-calculus.- 2 The Newton polygon approach for mixed-order systems.-3 Triebel-Lizorkin spaces and the Lp-Lq setting.- 4 Application to parabolic differential equations.- List of figures.-Bibliography.- List of symbols.- Index.

Summary

In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel–Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier–Stokes equations with Boussinesq–Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs–Thomson correction.

Product details

Authors Rober Denk, Robert Denk, Mario Kaip
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783319375922
ISBN 978-3-31-937592-2
No. of pages 250
Dimensions 155 mm x 14 mm x 235 mm
Weight 400 g
Illustrations VIII, 250 p. 16 illus., 1 illus. in color.
Series Operator Theory: Advances and Applications
Operator Theory: Advances and Applications
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, B, Mathematics and Statistics, Mathematical physics, Partial Differential Equations, Functional analysis & transforms, Operator Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.