Fr. 203.00

Microcirculation in Fractal Branching Networks

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book presents a new method for analyzing the structure and function of the biological branching systems of fractal trees, with a focus on microcirculation. Branching systems in humans (vascular and bronchial trees) and those in the natural world (plants, trees, and rivers) are characterized by a fractal nature. To date, fractal studies have tended to concentrate on fractal dimensions, which quantify the complexity of objects, but the applications for practical use have remained largely unexplored. This book breaks new ground with topics that include the human retinal microcirculatory network, oxygen consumption by vascular walls, the Fåhraeus-Lindqvist effect, the bifurcation exponent, and the asymmetrical microvascular network. Readers are provided with simple formulas to express functions and a simulation graph with in vivo data. The book also discusses the mechanisms regulating blood flow and pressure and how they are related to pathological changes in the human body. Researchers and clinicians alike will find valuable new insights in these pioneering studies.

List of contents

Branching Systems of Fractal Vascular Trees.- A Theoretical Model for the Microcirculatory Network.- Oxygen Consumption by Vascular Walls in the Retinal Vasculature.- The Fåhraeus-Lindqvist Effect on the Retinal Microcirculation.- Effects of a Reduction in the Bifurcation Exponent from 3.00 to 2.85.- Asymmetrically B ranching Microvascular Networks

About the author

Dr. Takahashi obtained PhD degree in Faculty of Engineering, Graduate School of Engineering, School of Engineering Hokkaido University, Japan in 1993. He started his carrier as an assistant professor at Department of Electrical and Information Engineering (renamed as Department of Bio-system Engineering in 2000) of Yamagata University in the same year. He received ESM Travel Award by the European Society for Microcirculation in 1992. He moved to Department of Mathematical Information Science of Asahikawa Medical University as an associate professor in 2002.

Summary

This book presents a new method for analyzing the structure and function of the biological branching systems of fractal trees, with a focus on microcirculation. Branching systems in humans (vascular and bronchial trees) and those in the natural world (plants, trees, and rivers) are characterized by a fractal nature. To date, fractal studies have tended to concentrate on fractal dimensions, which quantify the complexity of objects, but the applications for practical use have remained largely unexplored. This book breaks new ground with topics that include the human retinal microcirculatory network, oxygen consumption by vascular walls, the Fåhraeus-Lindqvist effect, the bifurcation exponent, and the asymmetrical microvascular network. Readers are provided with simple formulas to express functions and a simulation graph with in vivo data. The book also discusses the mechanisms regulating blood flow and pressure and how they are related to pathological changes in the human body. Researchers and clinicians alike will find valuable new insights in these pioneering studies.

Product details

Authors Tatsuhisa Takahashi
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9784431561637
ISBN 978-4-431-56163-7
No. of pages 138
Dimensions 155 mm x 8 mm x 235 mm
Weight 242 g
Illustrations XIII, 138 p. 43 illus.
Subjects Natural sciences, medicine, IT, technology > Medicine > Non-clinical medicine

B, Medicine, Cardiology, INTERNAL MEDICINE, Ophthalmology, Applied mathematics, Biomathematics, Mathematical and Computational Biology, Physiological, Cellular and Medical Topics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.