Fr. 236.00

Nonlinear and Stochastic Climate Dynamics

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Christian L. E. Franzke is a research scientist at Universität Hamburg. His research interests include nonlinear atmospheric and climate dynamics, weather and climate risks, dynamics of extreme events, and stochastic and multi-scale modelling. He has developed new methods for the nonlinear analysis of paleoclimate data, station data and climate model data, and has developed nonlinear stochastic climate models. Terence J. O'Kane is an Australian Research Council Future Fellow, a principal research scientist at the Commonwealth Scientific and Industrial Research Organisation, Canberra, and Adjunct Professor in Mathematics at the University of Tasmania. His research interests include the statistical mechanics and dynamics of geophysical flows, climate dynamics and variability, ensemble prediction and data assimilation, and time series analysis. He has worked on all aspects of weather prediction including the theory, modelling and operational implementation of ensemble systems. In 2013 he was awarded the J. H. Michell Medal by the Australian Mathematics Society for outstanding research. Klappentext This edited volume discusses the recent developments and current research questions in nonlinear and stochastic climate dynamics. Zusammenfassung This edited volume presents the latest developments and current research questions in nonlinear and stochastic climate dynamics. It provides graduate students and researchers with a broad overview of the physical climate system and introduces powerful data analysis and modeling methods for climate scientists and applied mathematicians. Inhaltsverzeichnis Preface; 1. Challenges for ice age dynamics: a dynamical systems perspective Michel Crucifix, Guillaume Lenoir and Takahito Mitsui; 2. Tipping points in the climate system Peter Ditlevsen; 3. Atmospheric teleconnection patterns Steven B. Feldstein and Christian L. E. Franzke; 4. Atmospheric regimes: the link between weather and the large scale circulation David M. Straus, Franco Molteni and Susanna Corti; 5. Low-frequency regime transitions and predictability of regimes in a barotropic model Balu T. Nadiga and Terence J. O'Kane; 6. Complex network techniques for climatological data analysis Reik V. Donner, Marc Wiedermann and Jonathan F. Donges; 7. On inference and validation of causality relations in climate teleconnections Illia Horenko, Susanne Gerber, Terence J. O'Kane, James S. Risbey and Didier P. Monselesan; 8. Stochastic climate theory Georg A. Gottwald, Daan T. Crommelin and Christian L. E. Franzke; 9. Stochastic subgrid modelling for geophysical and three-dimensional turbulence Jorgen S. Frederiksen, Vassili Kitsios, Terence J. O'Kane and Meelis J. Zidikheri; 10. Model error in data assimilation John Harlim; 11. Long-term memory in climate: detection, extreme events, and signi¿cance of trends Armin Bunde and Josef Ludescher; 12. Fractional stochastic models for heavy tailed, and long-range dependent, ¿uctuations in physical systems Nicholas Watkins; 13. Modelling spatial extremes using max-stable process Mathieu Ribatet; 14. Extreme value analysis in dynamical systems: two case studies Tamás Bódai; Index....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.