Fr. 70.00

Blind Image Deconvolution - Methods and Convergence

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not.
In order to avoid the assumptions needed for convergence analysis in the Fourier domain, the authors use a general method of convergence analysis used for alternate minimization based on three point and four point properties of the points in the image space. The authors prove that all points in the image space satisfy the three point property and also derive the conditions under which four point property is satisfied. This provides the conditions under which alternate minimization for blind deconvolution converges with a quadratic prior.

Since the convergence properties depend on the chosen priors, one should design priors that avoid trivial solutions. Hence, a sparsity based solution is also provided for blind deconvolution, by using image priors having a cost that increases with the amount of blur, which is another way to prevent trivial solutions in joint estimation. This book will be a highly useful resource to the researchers and academicians in the specific area of blind deconvolution.

List of contents

Introduction.- Mathematical Background.- Blind Deconvolution Methods: A Review.- MAP Estimation: When Does it Work?.- Convergence Analysis in Fourier Domain.- Spatial Domain Convergence Analysis.- Sparsity-based Blind Deconvolution.- Conclusions and Future Research Directions.

Summary

Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not.In order to avoid the assumptions needed for convergence analysis in the Fourier domain, the authors use a general method of convergence analysis used for alternate minimization based on three point and four point properties of the points in the image space. The authors prove that all points in the image space satisfy the three point property and also derive the conditions under which four point property is satisfied. This provides the conditions under which alternate minimization for blind deconvolution converges with a quadratic prior.Since the convergence properties depend on the chosen priors, one should design priors that avoid trivial solutions. Hence, a sparsity based solution is also provided for blind deconvolution, by using image priors having a cost that increases with the amount of blur, which is another way to prevent trivial solutions in joint estimation. This book will be a highly useful resource to the researchers and academicians in the specific area of blind deconvolution.

Product details

Authors Subhasi Chaudhuri, Subhasis Chaudhuri, Rameshan, Renu Rameshan, Rajbab Velmurugan, Rajbabu Velmurugan
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2016
 
EAN 9783319352169
ISBN 978-3-31-935216-9
No. of pages 151
Dimensions 155 mm x 10 mm x 236 mm
Weight 265 g
Illustrations XV, 151 p. 33 illus., 16 illus. in color.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > Application software

Elektronik, B, computer science, Computer Vision, Image Processing and Computer Vision, Digitale Signalverarbeitung (DSP), Signal, Image and Speech Processing, Signal Processing, Optical data processing, Speech processing systems, Imaging systems & technology, Image processing, Signal, Speech and Image Processing

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.