Read more
Informationen zum Autor Assistant Professor Qingsong Xu, University of Macau, China, has been working in the area of micro/nano-mechatronics and robotics including design and precision control of micro/nano-positioning systems for over 10 years. He has published over 140 peer-reviewed papers in journals and conferences in related domains. Klappentext An innovative and timely guide to the modeling, design and implementation of large-range compliant micropositioning systems based on flexure hinges* Features innovative compact mechanism designs for large-range translational and rotational positioning* Provides original and concise treatment of various flexure hinges with well-presented design and control methods* Focuses on design implementation and applications through detailed examples Zusammenfassung An innovative and timely guide to the modeling! design and implementation of large-range compliant micropositioning systems based on flexure hinges* Features innovative compact mechanism designs for large-range translational and rotational positioning* Provides original and concise treatment of various flexure hinges with well-presented design and control methods* Focuses on design implementation and applications through detailed examples Inhaltsverzeichnis Preface xiii Acknowledgments xvii 1 Introduction 1 1.1 Micropositioning Techniques 1 1.2 Compliant Guiding Mechanisms 2 1.2.1 Basic Flexure Hinges 2 1.2.2 Translational Flexure Hinges 3 1.2.3 Translational Positioning Mechanisms 4 1.2.4 Rotational Positioning Mechanisms 8 1.2.5 Multi-Stroke Positioning Mechanisms 10 1.3 Actuation and Sensing 11 1.4 Control Issues 12 1.5 Book Outline 14 References 14 Part I LARGE-RANGE TRANSLATIONAL MICROPOSITIONING SYSTEMS 2 Uniaxial Flexure Stage 21 2.1 Concept of MCPF 21 2.1.1 Limitation of Conventional Flexures 21 2.1.2 Proposal of MCPF 23 2.2 Design of a Large-Range Flexure Stage 25 2.2.1 Mechanism Design 25 2.2.2 Analytical Modeling 26 2.2.3 Architecture Optimization 29 2.2.4 Structure Improvement 31 2.3 Prototype Development and Performance Testings 33 2.3.1 Statics Performance Testing 34 2.3.2 Dynamics Performance Testing 35 2.4 Sliding Mode Controller Design 35 2.4.1 Dynamics Modeling 35 2.4.2 DSMC Design 36 2.5 Experimental Studies 38 2.5.1 Plant Model Identification 38 2.5.2 Controller Setup 39 2.5.3 Set-Point Positioning Results 39 2.5.4 Sinusoidal Positioning Results 41 2.6 Conclusion 42 References 44 3 XY Flexure Stage 45 3.1 Introduction 45 3.2 XY Stage Design 46 3.2.1 Decoupled XY Stage Design with MCPF 46 3.2.2 Buckling/Bending Effect Consideration 49 3.2.3 Actuation Issues 51 3.3 Model Verification and Prototype Development 52 3.3.1 Performance Assessment with FEA Simulation 52 3.3.2 Prototype Fabrication 54 3.3.3 Open-Loop Experimental Results 54 3.4 EMPC Control Scheme Design 55 3.4.1 Problem Formulation 56 3.4.2 EMPC Scheme Design 57 3.4.3 State Observer Design 60 3.4.4 Tracking Error Analysis 61 3.5 Simulation and Experimental Studies 61 3.5.1 Plant Model Identification 61 3.5.2 Controller Parameter Design 64 3.5.3 Simulation Studies and Discussion 64 3.5.4 Experimental Results and Discussion 66 3.6 Conclusion 67 References 69 4 Two-Layer XY Flexure Stage 70 4.1 Introduction 70 4.2 Mechanism Design 71 4.2.1 Design of a Two-Layer XY Stage with MCPF 71 4.2.2 Structure Improvement of the XY Stage 72 4.3 Parametric Design 73 4.3.1 Motion Range Design 73 4.3.2 Stiffness a...