Fr. 210.00

Hadrons At Finite Temperature

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Samirnath Mallik is an Emeritus Scientist at the Saha Institute of Nuclear Physics. He previously worked at the University of Bern, the University of Karlsruhe and the Tata Institute of Fundamental Research. His research interests are thermal field theory and heavy ion collisions. Klappentext High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal field theory. Zusammenfassung This book offers an elementary introduction to hadronic properties at finite temperature and density for graduate students and researchers. Developing real-time methods of thermal field theory! this self-contained text examines the applications of these to thermal properties of hadrons! including heavy ion collisions and transport processes. Inhaltsverzeichnis Preface; Notation; 1. Free fields in vacuum; 2. Spontaneous symmetry breaking; 3. Chiral perturbation theory; 4. Thermal propagators; 5. Thermal Perturbation Theory; 6. Thermal parameters; 7. Two-loop results; 8. Heavy ion collisions; 9. Non-equilibrium processes; Appendix A. General fields; Appendix B. Global symmetries; Appendix C. Exponential operator; Appendix D. Propagator at origin of coordinates; Appendix E. Reaction rates in vacuum and medium; Appendix F. Coupling constants; Appendix G. Imaginary time method; Appendix H. Quark condensate from partition function; Appendix I. Quark condensate from density expansion; Index....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.