Fr. 116.00

X-Rays and Extreme Ultraviolet Radiation - Principles and Applications

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor David Attwood is Professor Emeritus at the University of California, Berkeley. He is a co-founder of the Applied Science and Technology PhD program at Berkeley, and a Fellow of the American Physical Society and the Optical Society of America. He has published over 100 scientific papers and co-edited several books. Klappentext With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter. Zusammenfassung Master the physics and understand the current applications of modern X-ray and EUV sources with this comprehensive yet mathematically accessible guide. This second edition includes entirely new material on free electron lasers! laser high harmonic generation! X-ray and EUV optics! nanoscale imaging! and femtosecond and attosecond techniques. Inhaltsverzeichnis 1. Introduction; 2. Radiation and scattering at EUV and X-ray wavelengths; 3. Wave propagation and refractive index at X-ray and EUV wavelengths; 4. Coherence at short wavelengths; 5. Synchrotron radiation; 6. X-ray and EUV free electron lasers; 7. Laser high harmonic generation; 8. Physics of hot dense plasmas; 9. Extreme ultraviolet and soft X-ray lasers; 10. X-ray and extreme ultraviolet optics; 11. X-ray and EUV imaging....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.