Share
Fr. 91.00
Steven Roman
An Introduction to the Language of Category Theory
English · Paperback / Softback
Shipping usually within 6 to 7 weeks
Description
This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics.
The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra.
The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions - products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions.
Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.
List of contents
Preface.- Categories.- Functors and Natural Transformations.- Universality.- Cones and Limits.- Adjoints.- References.- Index of Symbols.- Index.
About the author
Steven Roman is Professor Emeritus of Mathematics at California State University Fullerton. He is the author of numerous other mathematics textbooks, including Field Theory (2006), Advanced Linear Algebra (2008), Fundamentals of Group Theory (2012), Introduction to the Mathematics of Finance (2012), and An Introduction to Catalan Numbers (2015).
Summary
This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics.
The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra.
The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions – products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions.
Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.
Additional text
“This book offers a fast, but very complete, introduction to the basic concepts in category theory, which any reader with a basic knowledge of abstract algebra will follow easily. … The theory is very well complemented by a list of proposed exercises at the end of every chapter… . This book is appropriate, as was said previously, for a fast introduction to category theory, and could be very useful for a short introductory course on categorical methods in advanced algebra.” (Juan Antonio López-Ramos, Mathematical Reviews, July, 2017)
“This book is, as promised in this series, a compact, easy to read and useful for lecturers introduction to the basic concepts of category theory. It is very convenient for self-studying and it can be used as starting point to read more advanced book on category theory. The book includes very nice and helpful diagrams, detailed explanation of the concepts and, in every chapter, a set of exercises that will help the reader to better understanding the text.” (Blas Torrecillas, zbMATH 1360.18001, 2017)
Report
"This book offers a fast, but very complete, introduction to the basic concepts in category theory, which any reader with a basic knowledge of abstract algebra will follow easily. ... The theory is very well complemented by a list of proposed exercises at the end of every chapter... . This book is appropriate, as was said previously, for a fast introduction to category theory, and could be very useful for a short introductory course on categorical methods in advanced algebra." (Juan Antonio López-Ramos, Mathematical Reviews, July, 2017)
"This book is, as promised in this series, a compact, easy to read and useful for lecturers introduction to the basic concepts of category theory. It is very convenient for self-studying and it can be used as starting point to read more advanced book on category theory. The book includes very nice and helpful diagrams, detailed explanation of the concepts and, in every chapter, a set of exercises that will help the reader to better understanding the text." (Blas Torrecillas, zbMATH 1360.18001, 2017)
Product details
| Authors | Steven Roman |
| Publisher | Springer, Berlin |
| Languages | English |
| Product format | Paperback / Softback |
| Released | 01.01.2017 |
| EAN | 9783319419169 |
| ISBN | 978-3-31-941916-9 |
| No. of pages | 169 |
| Dimensions | 155 mm x 233 mm x 11 mm |
| Weight | 300 g |
| Illustrations | XII, 169 p. 176 illus., 5 illus. in color. |
| Series |
Compact Textbooks in Mathematics Birkhäuser Compact Textbooks in Mathematics |
| Subjects |
Natural sciences, medicine, IT, technology
> Mathematics
> Arithmetic, algebra
Algebra, B, Mathematics and Statistics, Order, Lattices, Ordered Algebraic Structures, Ordered algebraic structures, Category theory (Mathematics), Category Theory, Homological Algebra, Homological algebra, General Algebraic Systems, Category Theory;Category;Functor;Adjoints;Yoneda's lemma |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.