Fr. 70.00

Ultracold Atoms for Foundational Tests of Quantum Mechanics

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more


This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple "toy-models" often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics. 

List of contents

Introduction.- Background I: Physical Systems.- Background II: Phase-space Methods.- Proposal for Demonstrating the Hong-Ou-Mandel E ect with Matter Waves.- Proposal for a Motional-state Bell Inequality Test with Ultracold Atoms.- Sensitivity to Thermal Noise of Atomic Einstein-Podolsky-Rosen Entanglement.- An Atomic SU(1,1) Interferometer Via Spin-changing Collisions.- On the Relation of the Particle Number Distribution of Stochastic Wigner Trajectories and Experimental Realizations.- Conclusion. 

About the author


Robert Lewis-Swan obtained his Bachelors degree in science from University of Queensland, Australia in 2011 and was consequently awarded a prestigious University Medal. He continued his education at University of Queensland, pursuing a PhD in ultracold atomic physics under the supervision of A/Prof. Karen Kheruntsyan and graduating in 2015. His research interests include the study of non-equilibrium many-body dynamics, specifically the novel physics currently being explored in analogue quantum simulators, along with the generation, characterization and exploitation of entanglement and non-classical correlations in developing quantum technology.     

Summary


This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple “toy-models” often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics. 

Product details

Authors Robert J Lewis-Swan, Robert J. Lewis-Swan
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2016
 
EAN 9783319410470
ISBN 978-3-31-941047-0
No. of pages 156
Dimensions 171 mm x 13 mm x 245 mm
Weight 374 g
Illustrations XVI, 156 p. 35 illus., 14 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

B, Materialwissenschaft, Quantum Physics, Quantum physics (quantum mechanics & quantum field theory), Physics and Astronomy, Atomic & molecular physics, Quantum computers, Spintronics, Quantum Information Technology, Spintronics, Condensed materials, Phase transformations (Statistical physics), Quantum Gases and Condensates

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.