Fr. 66.00

Numerische Behandlung partieller Differentialgleichungen

German · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf existierende Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

List of contents

Notation.- 1 Grundbegriffe.- 1.1 Klassifikation und Korrektheit.- 1.2 Fouriersche Methode, Integraltransformationen.- 1.3 Maximumprinzip, Fundamentallösung.- 2 Differenzenverfahren.- 2.1 Grundkonzepte.- 2.2 Einführende Beispiele.- 2.3 Transport probleme und Erhaltungsgleichungen.- 2.4 Elliptische Randwertaufgaben.- 2.5 Differenzenverfahren und Finite-Volumen-Verfahren.- 2.6 Parabolische Anfangs-Randwert-Probleme.- 2.7 Hyperbolische Probleme 2. Ordnung.- 3 Schwache Lösungen.- 3.1 Einführung.- 3.2 Angepaßte Funktionenräume.- 3.3 Variationsgleichungen und konforme Approximation.- 3.4 Abschwächungen der V-Elliptizität.- 3.5 Nichtlineare Probleme.- 4 Methode der finiten Elemente.- 4.1 Ein Beispiel.- 4.2 Finite-Elemente-Räume.- 4.3 Zur Realisierung der Finite-Elemente-Methode.- 4.4 Konvergenz konformer Methoden.- 4.5 Nichtkonforme Finite-Elemente-Methoden.- 4.6 Gemischte finite Elemente.- 4.7 Fehlerschätzer und adaptive FEM.- 4.8 Die diskontinuierliche Galerkin-Methode.- 4.9 Hinweise zu weiteren Aspekten.- 5 Finite Elemente für instationäre Probleme.- 5.1 Parabolische Aufgaben.- 5.2 Hyperbolische Aufgaben zweiter Ordnung.- 6 Singulär gestörte Randwertaufgaben.- 6.1 Zweipunkt-Randwertaufgaben.- 6.2 Räumlich eindimensionale parabolische Probleme.- 6.3 Mehrdimensionale Konvektions-Diffusions-Probleme.- 7 Variationsungleichungen, optimale Steuerung.- 7.1 Aufgabenstellung.- 7.2 Diskretisierung von Variationsungleichungen.- 7.3 Penalty-Methoden.- 7.4 Optimale Steuerung partieller DGLN.- 8 Verfahren für diskretisierte Probleme.- 8.1 Besonderheiten der Aufgabenstellung.- 8.2 Direkte Verfahren.- 8.3 Iterationsverfahren.- 8.4 CG - Verfahren.- 8.5 Mehrgitterverfahren.- 8.6 Gebietszerlegung, parallele Algorithmen.- Bücher u. ä.- Zeitschriftenartikel.

About the author

Prof. Dr. Christian Großmann, TU Dresden

Prof. Dr. Hans-Görg Roos, TU Dresden

Summary

Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf existierende Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

Foreword

Zweckmäßige Lösungen partieller Differenzialgleichungen

Additional text

"Because of its emphasis on the practical details of the numerical methods, as well as the ample illustrations by simple examples, the book is an excellent introduction to the field."

Zentralblatt MATH, 1086, 12/2006

Report

"Die Numerik partieller Differentialgleichungen wird hier in relativ weitem Umfang vorgeführt: es beginnt bei der Diskretisierung der ursprünglichen Gleichungen, es werden Fragen der Konsistenz und Stabilität behandelt, und auch Fragen der zweckmäßigen Lösung der entstehenden Gleichungen werden nicht wie sonst in vergleichbaren Büchern verschiedentlich, zur Seite geschoben." (Monatshefte für Mathematik. H.Muthsam, Wien)

Product details

Authors Christia Grossmann, Christian Grossmann, Hans-Görg Roos
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.2005
 
EAN 9783519220893
ISBN 978-3-519-22089-3
No. of pages 571
Dimensions 168 mm x 29 mm x 240 mm
Weight 960 g
Illustrations 572 S. 6 Abb.
Series Teubner Studienbücher Mathematik
Teubner Studienbücher Mathematik
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Mathematik : Lehrwerke, Analysis, Differentialrechnung, Angewandte Mathematik, numerische Verfahren, Mathematics and Statistics, Applications of Mathematics, Partial Differential Equations, Differential equations, Engineering mathematics, Applied mathematics, Singuläre Störungen

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.