Fr. 196.00

High-Power Converters and Ac Drives

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Bin Wu is a Professor and Senior NSERC/Rockwell Automation Industrial Research Chair in Power Electronics and Electric Drives at Ryerson University, Canada. He is a fellow of Institute of Electrical and Electronics Engineers (IEEE), Engineering Institute of Canada (EIC), and Canadian Academy of Engineering (CAE). Dr. Wu has published more than 400 papers and holds more than 30 granted/pending US/European patents. He co-authored several books including Power Conversion and Control of Wind Energy Systems and Model Predictive Control of Wind Energy Conversion Systems (both by Wiley-IEEE Press). Mehdi Narimani is an Assistant Professor at the Department of Electrical and Computer Engineering at McMaster University, Canada. He is a senior member of IEEE. Dr. Narimani has published more than 55 journal and conference proceeding papers, and holds more than four issued/pending US/European patents. His current research interests include power conversion, high-power converters, control of power electronics, and renewable energy systems. Klappentext A comprehensive reference of the latest developments in MV drive technology in the area of power converter topologies This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods. This new edition: Provides an in-depth discussion and analysis of various control schemes for the MV synchronous motor drives Examines new technologies developed to eliminate the isolation transformer in the MV drives Discusses the operating principle and modulation schemes of matrix converter (MC) topology and multi-module cascaded matrix converters (CMCs) for MV drives, and their application in commercial MV drives Zusammenfassung A comprehensive reference of the latest developments in MV drive technology in the area of power converter topologies This new edition reflects the recent technological advancements in the MV drive industry! such as advanced multilevel converters and drive configurations. Inhaltsverzeichnis About the Authors xv Preface and Acknowledgments xvii List of Abbreviations xix Part One Introduction 1 1. Introduction 3 1.1 Overview of High-Power Drives 3 1.2 Technical Requirements and Challenges 5 1.3 Converter Configurations 8 1.4 Industrial MV Drives 11 1.5 Summary 14 References 15 Appendix 16 2. High-Power Semiconductor Devices 17 2.1 Introduction 17 2.2 High-Power Switching Devices 18 2.3 Operation of Series Connected Devices 29 2.4 Summary 32 References 33 Part Two Multipulse Diode and SCR Rectifiers 35 3. Multipulse Diode Rectifiers 37 3.1 Introduction 37 3.2 Six-Pulse Diode Rectifier 38 3.3 Series-Type Multipulse Diode Rectifiers 47 3.4 Separate-Type Multipulse Diode Rectifiers 57 3.5 Summary 62 References 63 4. Multipulse SCR Rectifiers 65 4.1 Introduction 65 4.2 Six-Pulse SCR Rectifier 65 4.3 12-Pulse SCR Rectifier 74 4.4 18- and 24-Pulse SCR Rectifiers 79 4.5 Summary 80 References 81 5. Phase-Shifting Transformers 83 5.1 Introduction 83 ...

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.