Fr. 70.00

Hyperbolicity of Projective Hypersurfaces

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Thisbook presents recent advances on Kobayashi hyperbolicity in complex geometry,especially in connection with projective hypersurfaces. This is a very activefield, not least because of the fascinating relations with complex algebraicand arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta,among others, resulted in precise conjectures regarding the interplay of theseresearch fields (e.g. existence of Zariski dense entire curves shouldcorrespond to the (potential) density of rational points).

Perhapsone of the conjectures which generated most activity in Kobayashi hyperbolicitytheory is the one formed by Kobayashi himself in 1970 which predicts that avery general projective hypersurface of degree large enough does not containany (non-constant) entire curves. Since the seminal work of Green and Griffithsin 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, itbecame clear that a possible general strategy to attack this problem was tolook at particular algebraic differential equations (jet differentials) thatevery entire curve must satisfy. This has led to some several spectacularresults. Describing the state of the art around this conjecture is the maingoal of this work.

List of contents

- Introduction.- Kobayashi hyperbolicity: basic theory.- Algebraic hyperbolicity.- Jets spaces.- Hyperbolicity and negativity of the curvature.- Hyperbolicity of generic surfaces in projective 3-space.- Algebraic degeneracy for projective hypersurfaces.

About the author

Simone Diverio is a 1st class CNRS researcher at the Institute of Mathematics of Jusseau - Paris Rive Gauche, France. He received his PhD (2008) jointly from the University of Grenoble I, France, and Sapienza University of Rome, Italy. In 2010 he was awarded the Prime d'Excellence Scientifique by the CNRS. Erwan Rousseau is a professor at Aix-Marseille University, France. He did his PhD at Brest University, France (2004), with post-doc studies at the University of Quebéc, Canada and research at the University of Strasbourg (2010). In 2007, he was awarded the Cours Peccot du Collége de France.

Summary

This
book presents recent advances on Kobayashi hyperbolicity in complex geometry,
especially in connection with projective hypersurfaces. This is a very active
field, not least because of the fascinating relations with complex algebraic
and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta,
among others, resulted in precise conjectures regarding the interplay of these
research fields (e.g. existence of Zariski dense entire curves should
correspond to the (potential) density of rational points).

Perhaps
one of the conjectures which generated most activity in Kobayashi hyperbolicity
theory is the one formed by Kobayashi himself in 1970 which predicts that a
very general projective hypersurface of degree large enough does not contain
any (non-constant) entire curves. Since the seminal work of Green and Griffiths
in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it
became clear that a possible general strategy to attack this problem was to
look at particular algebraic differential equations (jet differentials) that
every entire curve must satisfy. This has led to some several spectacular
results. Describing the state of the art around this conjecture is the main
goal of this work.

Product details

Authors Simon Diverio, Simone Diverio, Erwan Rousseau
Publisher Springer, Berlin
 
Original title A Survey on Hiperbolicity of Projective Hypersurfaces
Languages English
Product format Hardback
Released 01.01.2016
 
EAN 9783319323145
ISBN 978-3-31-932314-5
No. of pages 89
Dimensions 162 mm x 246 mm x 13 mm
Weight 274 g
Illustrations XIV, 89 p. 3 illus.
Series Jahrbuch der Europäischen Totentanz-Vereinigung
IMPA Monographs
IMPA Monographs
Jahrbuch der Europäischen Totentanz-Vereinigung
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

B, Algebraische Geometrie, Komplexe Analysis, komplexe Variablen, Funktionentheorie, Mathematics and Statistics, Algebraic Geometry, Differential Geometry, Complex analysis, complex variables, Functions of complex variables, Several Complex Variables and Analytic Spaces

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.