Fr. 169.00

Data Science and Big Data Computing - Frameworks and Methodologies

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

List of contents

Part I: Data Science Applications and Scenarios.- An Interoperability Framework and Distributed Platform for Fast Data Applications.- Complex Event Processing Framework for Big Data Applications.- Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios.- Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted Graphs: A Big Data Perspective.- Part II: Big Data Modelling and Frameworks.- A Unified Approach to Data Modelling and Management in Big Data Era.- Interfacing Physical and Cyber Worlds: A Big Data Perspective.- Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data.- An Analytics Driven Approach to Identify Duplicate Bug Records in Large Data Repositories.- Part III: Big Data Tools and Analytics.- Large Scale Data Analytics Tools: Apache Hive, Pig and HBase.- Big Data Analytics: Enabling Technologies and Tools.- A Framework for Data Mining and Knowledge Discovery in Cloud Computing.- Feature Selection for Adaptive Decision Making in Big Data Analytics.- Social Impact and Social Media Analysis Relating to Big Data.

About the author

Professor Zaigham Mahmood is a Senior Technology Consultant at Debesis Education UK and Associate Lecturer (Research) at the University of Derby, UK. He also holds positions as Foreign Professor at NUST and IIU in Islamabad, Pakistan, and Professor Extraordinaire at the North West University Potchefstroom, South Africa. Prof. Mahmood is a certified cloud computing instructor and a regular speaker at international conferences devoted to Cloud Computing and E-Government. His specialized areas of research include distributed computing, project management, and e-government. Among his many publications are the Springer titles Cloud Computing: Challenges, Limitations and R&D SolutionsContinued Rise of the CloudCloud Computing: Methods and Practical ApproachesSoftware Engineering Frameworks for the Cloud Computing Paradigm, and Cloud Computing for Enterprise Architectures.

Summary

This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

Additional text

“This title presents recent research and future trends in the area of big data. … It will be of value to students and researchers looking for research topics and to data scientists exploring ongoing work in the field of big data. Summing Up: Recommended. Graduate students; faculty and professionals.” (C. Tappert, Choice, Vol. 54 (7), March, 2017)

Report

"This title presents recent research and future trends in the area of big data. ... It will be of value to students and researchers looking for research topics and to data scientists exploring ongoing work in the field of big data. Summing Up: Recommended. Graduate students; faculty and professionals." (C. Tappert, Choice, Vol. 54 (7), March, 2017)

Product details

Assisted by Zaigha Mahmood (Editor), Zaigham Mahmood (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2016
 
EAN 9783319318592
ISBN 978-3-31-931859-2
No. of pages 319
Dimensions 163 mm x 242 mm x 25 mm
Weight 669 g
Illustrations XXI, 319 p. 68 illus.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

B, Data Mining, Netzwerk-Hardware, computer science, Management of Computing and Information Systems, IT Operations, Computer Communication Networks, Data Mining and Knowledge Discovery, Expert systems / knowledge-based systems, Network hardware, computer networks

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.