Read more
Informationen zum Autor James P. K. Gilb received the Bachelor of Science degree in Electrical Engineering in 1987 from the Arizona State University, graduating magna cum laude. In 1989, he received the Master of Science degree in Electrical Engineering from the same institution and was named the Outstanding Graduate of the Graduate College. He received the Ph.D. degree in Electrical Engineering in 1999, also from Arizona State University. From 1993 to 1995, he worked as an Electrical Engineer at the Hexcel Corporation's Advanced Products Division, which was subsequently bought by the Northrop Grumman Corporation, developing advanced artificial electromagnetic materials, radar absorbing materials, and radar absorbing structures. He joined the Motorola Corporation in 1995, working initially for the Government Systems Technology Group as an RFIC designer and radio system designer. In 1999, he moved to the Semiconductor Products Sector as a Technical Staff Engineer (Member of Technical Staff) where he worked on a variety of radio systems. He developed radio architectures and specifications for new products and provided input for new process development. He joined the Mobilian Corporation in 2000, as a Senior Staff Engineer, where he developed the radio architecture and wrote the specification for the RF/analog chip that supported simultaneous operation of IEEE Std 802.11 and Bluetooth. He was also responsible for! the detailed design and layout for the front-end RF circuits of the chip. He is currently the Director of Radio Engineering at Appairent Technologies where he is responsible for overseeing the implementation of the complete physical layer for IEEE Std 802.15.3. He has been the Technical Editor of the IEEE 802.15.3 Task Group since 2000 and was responsible for issuing all revisions of the draft standard. He has five patents issued and many papers published in refereed journals. Klappentext Wireless Multimedia: A Handbook to the IEEE 802. 15. 3 Standard clarifies the IEEE 802. 15. 3 standard for individuals who are implementing compliant devices and shows how the standard can be used to develop wireless multimedia applications. The 802. 15. 3 standard addresses an untapped market that does beyond 802. Inhaltsverzeichnis Introduction xv Acronyms and Abbreviations xvii Chapter 1 Background and History 1 What is an IEEE standard? 1 The 802.15 family 2 Why 802.15.3? 4 History of 802.15.3 6 Chapter 2 802.15.3 applications 13 The high-rate WPAN theme 13 Still image applications 14 Telephone quality audio applications 16 High quality audio applications 17 Gaming applications 18 Video and multimedia applications 19 Chapter 3 Overview of the IEEE 802.15.3 standard 23 Elements of the 802.15.3 piconet 25 PHY overview 28 Starting a piconet 31 The superframe 32 Joining and leaving a piconet 34 Connecting with other devices 35 Dependent piconets 36 Obtaining information 39 Power management 40 System changes 43 Implementation cost and complexity 44 Chapter 4 MAC functionality 47 MAC terminology in IEEE Std 802.15.3 47 Frame formats 49 Piconet timing and superframe structure 51 Interframe spacings 53 Contention access period (CAP) 55 Channel time allocation period (CTAP) 56 Comparing the contention access methods 60 Guard time 63 The role of the PNC 66 Starting a piconet 66 Handing over control 66 Ending a piconet 72 Joining and leaving the piconet 73 Association 74 Broadcasting piconet information 77 Disassociation 78 Assigning DEVIDs 80 Managing bandwidth 81 Acknowledgements 81 Asynchronous data 87 Stream connections 92 Fragmentati...