Fr. 220.00

Triaxial Testing of Soils

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Poul Lade has a career in laboratory experimentation at university level to study and model the behaviour of soils. With his students, the author developed testing equipment, performed experiments and build constitutive models for the observed soil behaviour while a professor at University of California at Los Angeles (UCLA) (1972-1993), Johns Hopkins University (1993-1999), Aalborg University in Denmark (1999-2003), and Catholic University of America in Washington, D.C. (2003-2015). Many of the experimental techniques developed over this range of years are explained in the present book. Klappentext Triaxial Testing of Soils explains how to carry out triaxial tests to demonstrate the effects of soil behaviour on engineering designs. An authoritative and comprehensive manual, it reflects current best practice and instrumentation.References are made throughout to easily accessible articles in the literature and the book's focus is on how to obtain high quality experimental results. Zusammenfassung Triaxial Testing of Soils explains how to carry out triaxial tests to demonstrate the effects of soil behaviour on engineering designs. An authoritative and comprehensive manual, it reflects current best practice and instrumentation. Inhaltsverzeichnis Preface xiii About the Author xvii 1 Principles of Triaxial Testing 1 1.1 Purpose of triaxial tests 1 1.2 Concept of testing 1 1.3 The triaxial test 2 1.4 Advantages and limitations 3 1.5 Test stages - consolidation and shearing 4 1.5.1 Consolidation 5 1.5.2 Shearing 5 1.6 Types of tests 5 1.6.1 Simulation of field conditions 6 1.6.2 Selection of test type 12 2 Computations and Presentation of Test Results 13 2.1 Data reduction 13 2.1.1 Sign rule - 2D 13 2.1.2 Strains 13 2.1.3 Cross¿sectional area 23 2.1.4 Stresses 24 2.1.5 Corrections 25 2.1.6 The effective stress principle 25 2.1.7 Stress analysis in two dimensions - Mohr's circle 25 2.1.8 Strain analysis in two dimensions - Mohr's circle 27 2.2 Stress-strain diagrams 28 2.2.1 Basic diagrams 28 2.2.2 Modulus evaluation 37 2.2.3 Derived diagrams 41 2.2.4 Normalized stress-strain behavior 48 2.2.5 Patterns of soil behavior - error recognition 49 2.3 Strength diagrams 51 2.3.1 Definition of effective and total strengths 51 2.3.2 Mohr-Coulomb failure concept 51 2.3.3 Mohr-Coulomb for triaxial compression 54 2.3.4 Curved failure envelope 55 2.3.5 MIT p-q diagram 57 2.3.6 Cambridge p-q diagram 59 2.3.7 Determination of best¿fit soil strength parameters 60 2.3.8 Characterization of total strength 60 2.4 Stress paths 61 2.4.1 Drained stress paths 61 2.4.2 Total stress paths in undrained tests 61 2.4.3 Effective stress paths in undrained tests 61 2.4.4 Normalized p-q diagrams 66 2.4.5 Vector curves 68 2.5 Linear regression analysis 72 2.5.1 MIT p-q diagram 72 2.5.2 Cambridge p-q diagram 74 2.5.3 Correct and incorrect linear regression analyses 75 2.6 Three¿dimensional stress states 76 2.6.1 General 3D stress states 76 2.6.2 Stress invariants 76 2.6.3 Stress deviator invariants 80 2.6.4 Magnitudes and directions of principal stresses 81 2.7 Principal stress space 83 2.7.1 Octahedral stresses 83 2.7.2 Triaxial plane 84 2.7.3 Octahedral plane 86 2.7.4 Characterization of 3D stress conditions 87 2.7.5 Shapes of stress invariants in principal stress space 89 2.7.6 Procedures for projecting stress points onto a common octahedral plane 90 2.7.7 Procedure for plotting stress points on an octahedral plane 96 2.7.8 Representation of test resu...

List of contents

Preface xiii
 
About the Author xvii
 
1 Principles of Triaxial Testing 1
 
1.1 Purpose of triaxial tests 1
 
1.2 Concept of testing 1
 
1.3 The triaxial test 2
 
1.4 Advantages and limitations 3
 
1.5 Test stages - consolidation and shearing 4
 
1.5.1 Consolidation 5
 
1.5.2 Shearing 5
 
1.6 Types of tests 5
 
1.6.1 Simulation of field conditions 6
 
1.6.2 Selection of test type 12
 
2 Computations and Presentation of Test Results 13
 
2.1 Data reduction 13
 
2.1.1 Sign rule - 2D 13
 
2.1.2 Strains 13
 
2.1.3 Cross-sectional area 23
 
2.1.4 Stresses 24
 
2.1.5 Corrections 25
 
2.1.6 The effective stress principle 25
 
2.1.7 Stress analysis in two dimensions - Mohr's circle 25
 
2.1.8 Strain analysis in two dimensions - Mohr's circle 27
 
2.2 Stress-strain diagrams 28
 
2.2.1 Basic diagrams 28
 
2.2.2 Modulus evaluation 37
 
2.2.3 Derived diagrams 41
 
2.2.4 Normalized stress-strain behavior 48
 
2.2.5 Patterns of soil behavior - error recognition 49
 
2.3 Strength diagrams 51
 
2.3.1 Definition of effective and total strengths 51
 
2.3.2 Mohr-Coulomb failure concept 51
 
2.3.3 Mohr-Coulomb for triaxial compression 54
 
2.3.4 Curved failure envelope 55
 
2.3.5 MIT p-q diagram 57
 
2.3.6 Cambridge p-q diagram 59
 
2.3.7 Determination of best-fit soil strength parameters 60
 
2.3.8 Characterization of total strength 60
 
2.4 Stress paths 61
 
2.4.1 Drained stress paths 61
 
2.4.2 Total stress paths in undrained tests 61
 
2.4.3 Effective stress paths in undrained tests 61
 
2.4.4 Normalized p-q diagrams 66
 
2.4.5 Vector curves 68
 
2.5 Linear regression analysis 72
 
2.5.1 MIT p-q diagram 72
 
2.5.2 Cambridge p-q diagram 74
 
2.5.3 Correct and incorrect linear regression analyses 75
 
2.6 Three-dimensional stress states 76
 
2.6.1 General 3D stress states 76
 
2.6.2 Stress invariants 76
 
2.6.3 Stress deviator invariants 80
 
2.6.4 Magnitudes and directions of principal stresses 81
 
2.7 Principal stress space 83
 
2.7.1 Octahedral stresses 83
 
2.7.2 Triaxial plane 84
 
2.7.3 Octahedral plane 86
 
2.7.4 Characterization of 3D stress conditions 87
 
2.7.5 Shapes of stress invariants in principal stress space 89
 
2.7.6 Procedures for projecting stress points onto a common octahedral plane 90
 
2.7.7 Procedure for plotting stress points on an octahedral plane 96
 
2.7.8 Representation of test results with principal stress rotation 97
 
3 Triaxial Equipment 99
 
3.1 Triaxial setup 99
 
3.1.1 Specimen, cap, and base 99
 
3.1.2 Membrane 103
 
3.1.3 O-rings 105
 
3.1.4 Drainage system 106
 
3.1.5 Leakage of triaxial setup 112
 
3.1.6 Volume change devices 113
 
3.1.7 Cell fluid 113
 
3.1.8 Lubricated ends 120
 
3.2 Triaxial cell 125
 
3.2.1 Cell types 125
 
3.2.2 Cell wall 127
 
3.2.3 Hoek cell 128
 
3.3 Piston 128
 
3.3.1 Piston friction 129
 
3.3.2 Connections between piston, cap, and specimen 132
 
3.4 Pressure supply 133
 
3.4.1 Water column 133
 
3.4.2 Mercury pot system 134
 
3.4.3 Compressed gas 135
 
3.4.4 Mechanically compressed fluids 136
 
3.4.5 Pressure intensifiers 137
 
3.4.6 Pressure transfer to triax

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.